Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Mol Nutr Food Res ; 68(5): e2300355, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38327171

ABSTRACT

SCOPE: Disturbances in one-carbon metabolism contribute to nonalcoholic fatty liver disease (NAFLD) which encompasses steatosis, steatohepatitis, fibrosis, and cirrhosis. The goal is to examine impact of folate deficiency and the Mthfr677C >T variant on NAFLD. METHODS AND RESULTS: This study uses the new Mthfr677C >T mouse model for the human MTHFR677C >T variant. Mthfr677CC and Mthfr677TT mice were fed control diet (CD) or folate-deficient (FD) diets for 4 months. FD and Mthfr677TT alter choline/methyl metabolites in liver and/or plasma (decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio, methyltetrahydrofolate, and betaine; increased homocysteine [Hcy]). FD, with contribution from Mthfr677TT, provokes fibrosis in males. Studies of normal livers reveal alterations in plasma markers and gene expression that suggest an underlying predisposition to fibrosis induced by FD and/or Mthfr677TT in males. These changes are absent or reverse in females, consistent with the sex disparity of fibrosis. Sex-based differences in methylation potential, betaine, sphingomyelin, and trimethylamine-N-oxide (TMAO) levels may prevent fibrogenesis in females. In contrast, Mthfr677TT alters choline metabolism, dysregulates expression of lipid metabolism genes, and promotes steatosis in females. CONCLUSION: This study suggests that folate deficiency predisposes males to fibrosis, which is exacerbated by Mthfr677TT, whereas Mthfr677TT predisposes females to steatosis, and reveal novel contributory mechanisms for these NAFLD-related disorders.


Subject(s)
Folic Acid Deficiency , Non-alcoholic Fatty Liver Disease , Male , Humans , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Betaine , Folic Acid Deficiency/metabolism , Folic Acid , Methylenetetrahydrofolate Reductase (NADPH2) , Genotype , Liver Cirrhosis/etiology , S-Adenosylmethionine , Choline/metabolism , Homocysteine
2.
Nutrients ; 15(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37049396

ABSTRACT

Maternal dietary levels of one-carbon (1C) metabolites (folic acid and choline) during pregnancy play a vital role in neurodevelopment. However, the impact of maternal dietary deficiencies on offspring stroke outcomes later in life remains undefined. The aim of this study was to investigate the role of maternal dietary deficiencies in folic acid and choline on ischemic stroke outcomes in middle-aged offspring. Female mice were maintained on either a control or deficient diet prior to and during pregnancy and lactation. At 10 months of age ischemic stroke was induced in male and female offspring. Stroke outcome was assessed by measuring motor function and brain tissue. There was no difference in offspring motor function; however, sex differences were present. In brain tissue, maternal dietary deficiency increased ischemic damage volume and offspring from deficient mothers had reduced neurodegeneration and neuroinflammation within the ischemic region. Furthermore, there were changes in plasma 1C metabolites as a result of maternal diet and sex. Our data indicate that maternal dietary deficiencies do not impact offspring behavior after ischemic stroke but do play a role in brain histology and one-carbon metabolite levels in plasma. Additionally, this study demonstrates that the sex of mice plays an important role in stroke outcomes.


Subject(s)
Ischemic Stroke , Stroke , Pregnancy , Female , Male , Mice , Animals , Folic Acid , Choline/pharmacology , Lactation , Inflammation , Dietary Supplements
3.
PNAS Nexus ; 2(4): pgad105, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37077889

ABSTRACT

Adequate thymidylate [deoxythymidine monophosphate (dTMP) or the "T" base in DNA] levels are essential for stability of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Folate and vitamin B12 (B12) are essential cofactors in folate-mediated one-carbon metabolism (FOCM), a metabolic network which supports synthesis of nucleotides (including dTMP) and methionine. Perturbations in FOCM impair dTMP synthesis, causing misincorporation of uracil (or a "U" base) into DNA. During B12 deficiency, cellular folate accumulates as 5-methyltetrahdryfolate (5-methyl-THF), limiting nucleotide synthesis. The purpose of this study was to determine how reduced levels of the B12-dpendent enzyme methionine synthase (MTR) and dietary folate interact to affect mtDNA integrity and mitochondrial function in mouse liver. Folate accumulation, uracil levels, mtDNA content, and oxidative phosphorylation capacity were measured in male Mtr+/+ and Mtr+/- mice weaned onto either a folate-sufficient control (C) diet (2 mg/kg folic acid) or a folate-deficient (FD) diet (lacking folic acid) for 7 weeks. Mtr heterozygosity led to increased liver 5-methyl-THF levels. Mtr+/- mice consuming the C diet also exhibited a 40-fold increase in uracil in liver mtDNA. Mtr+/- mice consuming the FD diet exhibited less uracil accumulation in liver mtDNA as compared to Mtr+/+ mice consuming the FD diet. Furthermore, Mtr+/- mice exhibited 25% lower liver mtDNA content and a 20% lower maximal oxygen consumption rates. Impairments in mitochondrial FOCM are known to lead to increased uracil in mtDNA. This study demonstrates that impaired cytosolic dTMP synthesis, induced by decreased Mtr expression, also leads to increased uracil in mtDNA.

4.
Genes (Basel) ; 14(4)2023 04 14.
Article in English | MEDLINE | ID: mdl-37107671

ABSTRACT

We report on the case of prenatal detection of trisomy 2 in placental biopsy and further algorithm of genetic counseling and testing. A 29-year-old woman with first-trimester biochemical markers refused chorionic villus sampling and preferred targeted non-invasive prenatal testing (NIPT), which showed low risk for aneuploidies 13, 18, 21, and X. A series of ultrasound examinations revealed increased chorion thickness at 13/14 weeks of gestation and fetal growth retardation, a hyperechoic bowel, challenging visualization of the kidneys, dolichocephaly, ventriculomegaly, increase in placental thickness, and pronounced oligohydramnios at 16/17 weeks of gestation. The patient was referred to our center for an invasive prenatal diagnosis. The patient's blood and placenta were sampled for whole-genome sequencing-based NIPT and array comparative genomic hybridization (aCGH), respectively. Both investigations revealed trisomy 2. Further prenatal genetic testing in order to confirm trisomy 2 in amniocytes and/or fetal blood was highly questionable because oligohydramnios and fetal growth retardation made amniocentesis and cordocentesis technically unfeasible. The patient opted to terminate the pregnancy. Pathological examination of the fetus revealed internal hydrocephalus, atrophy of brain structure, and craniofacial dysmorphism. Conventional cytogenetic analysis and fluorescence in situ hybridization revealed chromosome 2 mosaicism with a prevalence of trisomic clone in the placenta (83.2% vs. 16.8%) and a low frequency of trisomy 2, which did not exceed 0.6% in fetal tissues, advocating for low-level true fetal mosaicism. To conclude, in pregnancies at risk of fetal chromosomal abnormalities that refuse invasive prenatal diagnosis, whole-genome sequencing-based NIPT, but not targeted NIPT, should be considered. In prenatal cases of trisomy 2, true mosaicism should be distinguished from placental-confined mosaicism using cytogenetic analysis of amniotic fluid cells or fetal blood cells. However, if material sampling is impossible due to oligohydramnios and/or fetal growth retardation, further decisions should be based on a series of high-resolution fetal ultrasound examinations. Genetic counseling for the risk of uniparental disomy in a fetus is also required.


Subject(s)
Oligohydramnios , Trisomy , Pregnancy , Female , Humans , Adult , Trisomy/diagnosis , Trisomy/genetics , Placenta , Genetic Counseling , Oligohydramnios/diagnosis , In Situ Hybridization, Fluorescence , Comparative Genomic Hybridization , Fetal Growth Retardation/genetics , Chromosomes, Human, Pair 2
5.
Nutrients ; 14(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36145177

ABSTRACT

The delivery of docosahexanoic acid (DHA) to the fetus is dependent on maternal one-carbon metabolism, as the latter supports the hepatic synthesis and export of a DHA-enriched phosphatidylcholine molecule via the phosphatidylethanolamine N-methyltransferase (PEMT) pathway. The following is a post-hoc analysis of a choline intervention study that sought to investigate whether common variants in one-carbon metabolizing genes associate with maternal and/or fetal blood biomarkers of DHA status. Pregnant women entering their second trimester were randomized to consume, until delivery, either 25 (n = 15) or 550 (n = 15) mg choline/d, and the effects of genetic variants in the PEMT, BHMT, MTHFD1, and MTHFR genes on DHA status were examined. Variant (vs. non-variant) maternal PEMT rs4646343 genotypes tended to have lower maternal RBC DHA (% total fatty acids) throughout gestation (6.9% vs. 7.4%; main effect, p = 0.08) and lower cord RBC DHA at delivery (7.6% vs. 8.4%; main effect, p = 0.09). Conversely, variant (vs. non-variant) maternal MTHFD1 rs2235226 genotypes exhibited higher cord RBC DHA (8.3% vs. 7.3%; main effect, p = 0.0003) and higher cord plasma DHA (55 vs. 41 µg/mL; main effect, p = 0.05). Genotype tended to interact with maternal choline intake (p < 0.1) to influence newborn DHA status for PEMT rs4646343 and PEMT rs7946. These data support the need to consider variants in one-carbon metabolic genes in studies assessing DHA status and requirements during pregnancy.


Subject(s)
Choline , Pregnant Women , Biomarkers , Carbon , Docosahexaenoic Acids , Fatty Acids , Female , Humans , Infant, Newborn , Phosphatidylcholines , Phosphatidylethanolamine N-Methyltransferase/genetics , Pregnancy
6.
Front Surg ; 9: 877974, 2022.
Article in English | MEDLINE | ID: mdl-35574561

ABSTRACT

Background: Technical achievements and surgical techniques improvement contribute to the expansion of the endoscopic spine surgery possibilities. However, today there are few reports about the use of percutaneous endoscopy in spinal tumor surgery. A case of percutaneous transforaminal endoscopic removal of the lumbar spinal nerve tumor with intraoperative neuromonitoring is presented. Case Description: A 59-year-old female was complaining of a left shin and foot pain, weakness, and paresthesia. Preoperative magnetic resonance imaging (MRI) revealed a tumor (neurinoma) at the left L5-S1 intervertebral foramen. Transforaminal endoscopic removal of an extramedullary tumor from an 8-mm skin incision with intraoperative neuromonitoring was performed. Postoperative MRI revealed the signs of total resection of the tumor. Conclusion: The presented case confirms that percutaneous endoscopic removal of lumbar spine intraforaminal neurinomas can be safe and effective.

7.
Am J Clin Nutr ; 116(3): 820-832, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35575618

ABSTRACT

BACKGROUND: Dietary methyl donors (e.g., choline) support the activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway, which generates phosphatidylcholine (PC) molecules enriched in DHA that are exported from the liver and made available to extrahepatic tissues. OBJECTIVES: This study investigated the effect of prenatal choline supplementation on biomarkers of DHA status among pregnant participants consuming supplemental DHA. METHODS: Pregnant participants (n = 30) were randomly assigned to receive supplemental choline intakes of 550 mg/d [500 mg/d d0-choline + 50 mg/d deuterium-labeled choline (d9-choline); intervention] or 25 mg/d (25 mg/d d9-choline; control) from gestational week (GW) 12-16 until delivery. All participants received a daily 200-mg DHA supplement and consumed self-selected diets. Fasting blood samples were obtained at baseline, GW 20-24, and GW 28-32; maternal/cord blood was obtained at delivery. Mixed-effects linear models were used to assess the impact of prenatal choline supplementation on maternal and newborn DHA status. RESULTS: Choline supplementation (550 vs. 25 mg/d) did not achieve a statistically significant intervention × time interaction for RBC PC-DHA (P = 0.11); a significant interaction was observed for plasma PC-DHA and RBC total DHA, with choline supplementation yielding higher levels (+32-38% and +8-11%, respectively) at GW 28-32 (P < 0.05) and delivery (P < 0.005). A main effect of choline supplementation on plasma total DHA was also observed (P = 0.018); its interaction with time was not significant (P = 0.068). Compared with controls, the intervention group exhibited higher (P = 0.007; main effect) plasma enrichment of d3-PC (d3-PC/total PC). Moreover, the ratio of d3-PC to d9-PC was higher (+50-67%; P < 0.001) in the choline intervention arm (vs. control) at GW 20-24, GW 28-32, and delivery. CONCLUSIONS: Prenatal choline supplementation improves hepatic DHA export and biomarkers of DHA status by bolstering methyl group supply for PEMT activity among pregnant participants consuming supplemental DHA. This trial is registered at www.clinicaltrials.gov as NCT03194659.


Subject(s)
Choline , Docosahexaenoic Acids , Biomarkers , Dietary Supplements , Female , Humans , Infant, Newborn , Phosphatidylcholines/metabolism , Pregnancy , Vitamins
8.
Nutrients ; 14(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35268026

ABSTRACT

Food fortification and increased vitamin intake have led to higher folic acid (FA) consumption by many pregnant women. We showed that FA-supplemented diet in pregnant mice (fivefold higher FA than the recommended level (5xFASD)) led to hyperactivity-like behavior and memory impairment in pups. Disturbed choline/methyl metabolism and altered placental gene expression were identified. The aim of this study was to examine the impact of 5xFASD on the brain at two developmental stages, postnatal day (P) 30 and embryonic day (E) 17.5. Female C57BL/6 mice were fed a control diet or 5xFASD for 1 month before mating. Diets were maintained throughout the pregnancy and lactation until P30 or during pregnancy until E17.5. The 5xFASD led to sex-specific transcription changes in a P30 cerebral cortex and E17.5 cerebrum, with microarrays showing a total of 1003 and 623 changes, respectively. Enhanced mRNA degradation was observed in E17.5 cerebrum. Expression changes of genes involved in neurotransmission, neuronal growth and development, and angiogenesis were verified by qRT-PCR; 12 and 15 genes were verified at P30 and E17.5, respectively. Hippocampal collagen staining suggested decreased vessel density in FASD male embryos. This study provides insight into the mechanisms of neurobehavioral alterations and highlights potential deleterious consequences of moderate folate oversupplementation during pregnancy.


Subject(s)
Folic Acid , Placenta , Animals , Dietary Supplements , Female , Folic Acid/pharmacology , Gene Expression , Hippocampus , Humans , Male , Mice , Mice, Inbred C57BL , Pregnancy
9.
Biomedicines ; 9(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34944592

ABSTRACT

We performed a comparative cytogenomic analysis of cultured and uncultured uterine leiomyoma (UL) samples. The experimental approach included karyotyping, aCGH, verification of the detected chromosomal abnormalities by metaphase and interphase FISH, MED12 mutation analysis and telomere measurement by Q-FISH. An abnormal karyotype was detected in 12 out of 32 cultured UL samples. In five karyotypically abnormal ULs, MED12 mutations were found. The chromosomal abnormalities in ULs were present mostly by complex rearrangements, including chromothripsis. In both karyotypically normal and abnormal ULs, telomeres were ~40% shorter than in the corresponding myometrium, being possibly prerequisite to chromosomal rearrangements. The uncultured samples of six karyotypically abnormal ULs were checked for the detected chromosomal abnormalities through interphase FISH with individually designed DNA probe sets. All chromosomal abnormalities detected in cultured ULs were found in corresponding uncultured samples. In all tumors, clonal spectra were present by the karyotypically abnormal cell clone/clones which coexisted with karyotypically normal ones, suggesting that chromosomal abnormalities acted as drivers, rather than triggers, of the neoplastic process. In vitro propagation did not cause any changes in the spectrum of the cell clones, but altered their ratio compared to uncultured sample. The alterations were unique for every UL. Compared to its uncultured counterpart, the frequency of chromosomally abnormal cells in the cultured sample was higher in some ULs and lower in others. To summarize, ULs are characterized by both inter- and intratumor genetic heterogeneity. Regardless of its MED12 status, a tumor may be comprised of clones with and without chromosomal abnormalities. In contrast to the clonal spectrum, which is unique and constant for each UL, the clonal frequency demonstrates up or down shifts under in vitro conditions, most probably determined by the unequal ability of cells with different genetic aberrations to exist outside the body.

10.
FASEB J ; 35(12): e22063, 2021 12.
Article in English | MEDLINE | ID: mdl-34820909

ABSTRACT

Pregnancy places a unique stress upon choline metabolism, requiring adaptations to support both maternal and fetal requirements. The impact of pregnancy and prenatal choline supplementation on choline and its metabolome in free-living, healthy adults is relatively uncharacterized. This study investigated the effect of prenatal choline supplementation on maternal and fetal biomarkers of choline metabolism among free-living pregnant persons consuming self-selected diets. Participants were randomized to supplemental choline (as choline chloride) intakes of 550 mg/d (500 mg/d d0-choline + 50 mg/d methyl-d9-choline; intervention) or 25 mg/d d9-choline (control) from gestational week (GW) 12-16 until Delivery. Fasting blood and 24-h urine samples were obtained at study Visit 1 (GW 12-16), Visit 2 (GW 20-24), and Visit 3 (GW 28-32). At Delivery, maternal and cord blood and placental tissue samples were collected. Participants randomized to 550 (vs. 25) mg supplemental choline/d achieved higher (p < .05) plasma concentrations of free choline, betaine, dimethylglycine, phosphatidylcholine (PC), and sphingomyelin at one or more study timepoint. Betaine was most responsive to prenatal choline supplementation with increases (p ≤ .001) in maternal plasma observed at Visit 2-Delivery (relative to Visit 1 and control), as well as in the placenta and cord plasma. Notably, greater plasma enrichments of d3-PC and LDL-C were observed in the intervention (vs. control) group, indicating enhanced PC synthesis through the de novo phosphatidylethanolamine N-methyltransferase pathway and lipid export. Overall, these data show that prenatal choline supplementation profoundly alters the choline metabolome, supporting pregnancy-related metabolic adaptations and revealing biomarkers for use in nutritional assessment and monitoring during pregnancy.


Subject(s)
Adaptation, Physiological , Choline/administration & dosage , Dietary Supplements , Fetal Blood/metabolism , Fetus/metabolism , Metabolome , Placenta/metabolism , Adult , Case-Control Studies , Choline/blood , Female , Fetus/drug effects , Humans , Placenta/drug effects , Pregnancy , Young Adult
11.
Mol Nutr Food Res ; 65(14): e2100197, 2021 07.
Article in English | MEDLINE | ID: mdl-34010503

ABSTRACT

SCOPE: Many pregnant women have higher folic acid (FA) intake due to food fortification and increased vitamin use. It is reported that diets containing five-fold higher FA than recommended for mice (5xFASD) during pregnancy resulted in methylenetetrahydrofolate reductase (MTHFR) deficiency and altered choline/methyl metabolism, with neurobehavioral abnormalities in newborns. The goal is to determine whether these changes have their origins in the placenta during embryonic development. METHODS AND RESULTS: Female mice are fed control diet or 5xFASD for a month before mating and maintained on these diets until embryonic day 17.5. 5xFASD led to pseudo-MTHFR deficiency in maternal liver and altered choline/methyl metabolites in maternal plasma (increased methyltetrahydrofolate and decreased betaine). Methylation potential (S-adenosylmethionine:S-adenosylhomocysteine ratio) and glycerophosphocholine are decreased in placenta and embryonic liver. Folic acid supplemented diet results in sex-specific transcriptome profiles in placenta, with validation of dietary expression changes of 29 genes involved in angiogenesis, receptor biology or neurodevelopment, and altered methylation of the serotonin receptor 2A gene. CONCLUSION: Moderate increases in folate intake during pregnancy result in placental metabolic and gene expression changes, particularly in angiogenesis, which may contribute to abnormal behavior in pups. These results are relevant for determining a safe upper limit for folate intake during pregnancy.


Subject(s)
Folic Acid/pharmacology , Homocystinuria/chemically induced , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Muscle Spasticity/chemically induced , Placenta/metabolism , Sex Factors , Animals , DNA Methylation , Dietary Supplements , Female , Folic Acid/adverse effects , Gene Expression/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Phthalic Acids/blood , Pregnancy , Psychotic Disorders , S-Adenosylmethionine/blood , Transcriptome/drug effects
12.
J Nutr ; 151(4): 857-865, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33561219

ABSTRACT

BACKGROUND: North American women consume high folic acid (FA), but most are not meeting the adequate intakes for choline. High-FA gestational diets induce an obesogenic phenotype in rat offspring. It is unclear if imbalances between FA and other methyl-nutrients (i.e., choline) account for these effects. OBJECTIVE: This study investigated the interaction of choline and FA in gestational diets on food intake, body weight, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring. METHODS: Pregnant Wistar rats were fed an AIN-93G diet with recommended choline and FA [RCRF; 1-fold, control] or high (5-fold) FA with choline at 0.5-fold [low choline and high folic acid (LCHF)], 1-fold [recommended choline and high folic acid (RCHF)], or 2.5-fold [high choline and high folic acid (HCHF)]. Male offspring were weaned to an RCRF diet for 20 wk. Food intake, weight gain, plasma energy-regulatory hormones, brain and plasma one-carbon metabolites, and RNA sequencing (RNA-seq) in pup hypothalamuses were assessed. RESULTS: Adult offspring from LCHF and RCHF, but not HCHF, gestational diets had 10% higher food intake and weight gain than controls (P < 0.01). HCHF newborn pups had lower plasma insulin and leptin compared with LCHF and RCHF pups (P < 0.05), respectively. Pup brain choline (P < 0.05) and betaine (P < 0.01) were 22-33% higher in HCHF pups compared with LCHF pups; methionine was ∼23% lower after all high FA diets compared with RCRF (P < 0.01). LCHF adult offspring had lower brain choline (P < 0.05) than all groups and lower plasma 5-methyltetrahydrofolate (P < 0.05) than RCRF and RCHF groups. HCHF adult offspring had lower plasma cystathionine (P < 0.05) than LCHF adult offspring and lower homocysteine (P < 0.01) than RCHF and RCRF adult offspring. RNA-seq identified 144 differentially expressed genes in the hypothalamus of HCHF newborns compared with controls. CONCLUSIONS: Increased choline in gestational diets modified the programming effects of high FA on long-term food intake regulation, plasma energy-regulatory hormones, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring, emphasizing a need for more attention to the choline and FA balance in maternal diets.


Subject(s)
Appetite Regulation/physiology , Choline/administration & dosage , Folic Acid/administration & dosage , Maternal Nutritional Physiological Phenomena , Animal Nutritional Physiological Phenomena , Animals , Animals, Newborn , Body Weight/physiology , Brain/metabolism , Choline/blood , Eating/physiology , Female , Folic Acid/blood , Gene Expression , Hypothalamus/metabolism , Insulin/blood , Intra-Abdominal Fat/anatomy & histology , Leptin/blood , Male , Maternal-Fetal Exchange/physiology , Models, Animal , Pregnancy , Prenatal Exposure Delayed Effects , Rats , Weaning
13.
Article in English | MEDLINE | ID: mdl-33516092

ABSTRACT

BACKGROUND: The importance of providing the newborn infant with docosahexaenoic acid (DHA) from breast milk is well established. However, women in the United States, on average, have breast milk DHA levels of 0.20%, which is below the worldwide average (and proposed target) of >0.32%. Additionally, the relationship between maternal red blood cell (RBC) and breast milk DHA levels may provide insight into the sufficiency of DHA recommendations during lactation. Whether the standard recommendation of at least 200 mg/day of supplemental DHA during lactation is sufficient for most women to achieve a desirable RBC and breast milk DHA status is unknown. METHODS: Lactating women (n = 27) at about 5 weeks postpartum were enrolled in a 10-12 week controlled feeding study that included randomization to 480 or 930 mg choline/d (diet plus supplementation). As part of the intervention, all participants were required to consume a 200 mg/d of microalgal DHA. RBC and breast milk DHA levels were measured by capillary gas chromatography in an exploratory analysis. RESULTS: Median RBC DHA was 5.0% (95% CI: 4.3, 5.5) at baseline and 5.1% (4.6, 5.4) after 10 weeks of supplementation (P = 0.6). DHA as a percent of breast milk fatty acids increased from 0.19% (0.18, 0.33) to 0.34% (0.27, 0.38) after supplementation (P<0.05). The proportion of women meeting the target RBC DHA level of >5% was unchanged (52% at baseline and week 10). The proportion of women achieving a breast milk DHA level of >0.32% approximately doubled from 30% to 56% (p = 0.06). Baseline RBC and breast milk DHA levels affected their responses to supplementation. Those with baseline RBC and breast milk DHA levels above the median (5% and 0.19%, respectively) experienced no change or a slight decrease in levels, while those below the median had a significant increase. Choline supplementation did not significantly influence final RBC or breast milk DHA levels. CONCLUSIONS: On average, the standard prenatal DHA dose of 200 mg/d did not increase RBC DHA but did increase breastmilk DHA over 10 weeks in a cohort of lactating women in a controlled-feeding study. Baseline DHA levels in RBC and breast milk affected the response to DHA supplementation, with lower levels being associated with a greater increase and higher levels with no change or a slight decrease. Additional larger, dose-response DHA trials accounting for usual intakes and baseline DHA status are needed to determine how to best achieve target breast milk DHA levels and to identify additional modifiers of the variable breast milk DHA response to maternal DHA supplementation.


Subject(s)
Diet/methods , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Erythrocytes/chemistry , Lactation , Milk, Human/chemistry , Adult , Breast Feeding , Choline/administration & dosage , Chromatography, Gas/methods , Cohort Studies , Docosahexaenoic Acids/analysis , Female , Humans , Postpartum Period , Precision Medicine/methods , Pregnancy , Random Allocation , Vitamins/administration & dosage , Young Adult
14.
Nutrients ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35011003

ABSTRACT

Folate and choline are interconnected metabolically. The MTHFD1 R653Q SNP is a risk factor for birth defects and there are concerns that choline deficiency may interact with this SNP and exacerbate health risks. 80-90% of women do not meet the Adequate Intake (AI) for choline. The objective of this study was to assess the effects of choline deficiency on maternal one-carbon metabolism and reproductive outcomes in the MTHFD1-synthetase deficient mouse (Mthfd1S), a model for MTHFD1 R653Q. Mthfd1S+/+ and Mthfd1S+/- females were fed control (CD) or choline-deficient diets (ChDD; 1/3 the amount of choline) before mating and during pregnancy. Embryos were evaluated for delays and defects at 10.5 days gestation. Choline metabolites were measured in the maternal liver, and total folate measured in maternal plasma and liver. ChDD significantly decreased choline, betaine, phosphocholine, and dimethylglycine in maternal liver (p < 0.05, ANOVA), and altered phosphatidylcholine metabolism. Maternal and embryonic genotype, and diet-genotype interactions had significant effects on defect incidence. Mild choline deficiency and Mthfd1S+/- genotype alter maternal one-carbon metabolism and increase incidence of developmental defects. Further study is required to determine if low choline intakes contribute to developmental defects in humans, particularly in 653QQ women.


Subject(s)
Aminohydrolases/genetics , Choline Deficiency/genetics , Developmental Disabilities/genetics , Formate-Tetrahydrofolate Ligase/deficiency , Formate-Tetrahydrofolate Ligase/genetics , Maternal Nutritional Physiological Phenomena/genetics , Methenyltetrahydrofolate Cyclohydrolase/deficiency , Methylenetetrahydrofolate Dehydrogenase (NADP)/deficiency , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Multienzyme Complexes/genetics , Multifunctional Enzymes/deficiency , Animals , Choline/analysis , Developmental Disabilities/epidemiology , Disease Models, Animal , Embryonic Development/genetics , Female , Folic Acid/metabolism , Genotype , Incidence , Liver/metabolism , Mice , Polymorphism, Single Nucleotide , Pregnancy
15.
Autism Res ; 14(1): 11-28, 2021 01.
Article in English | MEDLINE | ID: mdl-33159718

ABSTRACT

The prenatal period is a critical window for the development of autism spectrum disorder (ASD). The relationship between prenatal nutrients and gestational gene expression in mothers of children later diagnosed with ASD or non-typical development (Non-TD) is poorly understood. Maternal blood collected prospectively during pregnancy provides insights into the effects of nutrition, particularly one-carbon metabolites, on gene pathways and neurodevelopment. Genome-wide transcriptomes were measured with microarrays in 300 maternal blood samples in Markers of Autism Risk in Babies-Learning Early Signs. Sixteen different one-carbon metabolites, including folic acid, betaine, 5'-methyltretrahydrofolate (5-MeTHF), and dimethylglycine (DMG) were measured. Differential expression analysis and weighted gene correlation network analysis (WGCNA) were used to compare gene expression between children later diagnosed as typical development (TD), Non-TD and ASD, and to one-carbon metabolites. Using differential gene expression analysis, six transcripts (TGR-AS1, SQSTM1, HLA-C, and RFESD) were associated with child outcomes (ASD, Non-TD, and TD) with genome-wide significance. Genes nominally differentially expressed between ASD and TD significantly overlapped with seven high confidence ASD genes. WGCNA identified co-expressed gene modules significantly correlated with 5-MeTHF, folic acid, DMG, and betaine. A module enriched in DNA methylation functions showed a suggestive protective association with folic acid/5-MeTHF concentrations and ASD risk. Maternal plasma betaine and DMG concentrations were associated with a block of co-expressed genes enriched for adaptive immune, histone modification, and RNA processing functions. These results suggest that the prenatal maternal blood transcriptome is a sensitive indicator of gestational one-carbon metabolite status and changes relevant to children's later neurodevelopmental outcomes. LAY SUMMARY: Pregnancy is a time when maternal nutrition could interact with genetic risk for autism spectrum disorder. Blood samples collected during pregnancy from mothers who had a prior child with autism were examined for gene expression and nutrient metabolites, then compared to the diagnosis of the child at age three. Expression differences in gene pathways related to the immune system and gene regulation were observed for pregnancies of children with autism and non-typical neurodevelopment and were associated with maternal nutrients.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/genetics , Carbon , Child , Child, Preschool , Epigenesis, Genetic/genetics , Female , Humans , Infant , Pregnancy , Prospective Studies
16.
Cell Death Discov ; 6(1): 95, 2020.
Article in English | MEDLINE | ID: mdl-33083017

ABSTRACT

Muscle-specific adult stem cells (MuSCs) are required for skeletal muscle regeneration. To ensure efficient skeletal muscle regeneration after injury, MuSCs must undergo state transitions as they are activated from quiescence, give rise to a population of proliferating myoblasts, and continue either to terminal differentiation, to repair or replace damaged myofibers, or self-renewal to repopulate the quiescent population. Changes in MuSC/myoblast state are accompanied by dramatic shifts in their transcriptional profile. Previous reports in other adult stem cell systems have identified alterations in the most abundant internal mRNA modification, N6-methyladenosine (m6A), conferred by its active writer, METTL3, to regulate cell state transitions through alterations in the transcriptional profile of these cells. Our objective was to determine if m6A-modification deposition via METTL3 is a regulator of MuSC/myoblast state transitions in vitro and in vivo. Using liquid chromatography/mass spectrometry we identified that global m6A levels increase during the early stages of skeletal muscle regeneration, in vivo, and decline when C2C12 myoblasts transition from proliferation to differentiation, in vitro. Using m6A-specific RNA-sequencing (MeRIP-seq), a distinct profile of m6A-modification was identified, distinguishing proliferating from differentiating C2C12 myoblasts. RNAi studies show that reducing levels of METTL3, the active m6A methyltransferase, reduced global m6A levels and forced C2C12 myoblasts to prematurely differentiate. Reducing levels of METTL3 in primary mouse MuSCs prior to transplantation enhanced their engraftment capacity upon primary transplantation, however their capacity for serial transplantation was lost. In conclusion, METTL3 regulates m6A levels in MuSCs/myoblasts and controls the transition of MuSCs/myoblasts to different cell states. Furthermore, the first transcriptome wide map of m6A-modifications in proliferating and differentiating C2C12 myoblasts is provided and reveals a number of genes that may regulate MuSC/myoblast state transitions which had not been previously identified.

17.
Nutrients ; 12(8)2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32722424

ABSTRACT

BACKGROUND: Trimethylamine-N-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought to determine: (1) TMAO response to meals containing free versus lipid-soluble choline and (2) effects of gut microbiome on TMAO response. METHODS: In a randomized, controlled, double-blinded, crossover study, healthy men (n = 37) were provided meals containing 600 mg choline either as choline bitartrate or phosphatidylcholine, or no choline control. RESULTS: Choline bitartrate yielded three-times greater plasma TMAO AUC (p = 0.01) and 2.5-times greater urinary TMAO change from baseline (p = 0.01) compared to no choline and phosphatidylcholine. Gut microbiota composition differed (permutational multivariate analysis of variance, PERMANOVA; p = 0.01) between high-TMAO producers (with ≥40% increase in urinary TMAO response to choline bitartrate) and low-TMAO producers (with <40% increase in TMAO response). High-TMAO producers had more abundant lineages of Clostridium from Ruminococcaceae and Lachnospiraceae compared to low-TMAO producers (analysis of composition of microbiomes, ANCOM; p < 0.05). CONCLUSION: Given that phosphatidylcholine is the major form of choline in food, the absence of TMAO elevation with phosphatidylcholine counters arguments that phosphatidylcholine should be avoided due to TMAO-producing characteristics. Further, development of individualized dietary recommendations based on the gut microbiome may be effective in reducing disease risk.


Subject(s)
Choline/administration & dosage , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Methylamines/blood , Methylamines/urine , Adult , Biomarkers/blood , Biomarkers/urine , Cardiovascular Diseases/etiology , Cross-Over Studies , Diet/adverse effects , Double-Blind Method , Female , Healthy Volunteers , Heart Disease Risk Factors , Humans , Male , Meals/physiology , Middle Aged , Phosphatidylcholines/administration & dosage
18.
Nutrients ; 12(6)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521649

ABSTRACT

Fifteen to 20% of pregnant women may exceed the recommended intake of folic acid (FA) by more than four-fold. This excess could compromise neurocognitive and motor development in offspring. Here, we explored the impact of an FA-supplemented diet (5× FASD, containing five-fold higher FA than recommended) during pregnancy on brain function in murine offspring, and elucidated mechanistic changes. We placed female C57BL/6 mice for one month on control diets or 5× FASD before mating. Diets were maintained throughout pregnancy and lactation. Behavioural tests were conducted on 3-week-old pups. Pups and mothers were sacrificed at weaning. Brains and livers were collected to examine choline/methyl metabolites and immunoreactive methylenetetrahydrofolate reductase (MTHFR). 5× FASD led to hyperactivity-like behavior and memory impairment in 3-week-old pups of both sexes. Reduced MTHFR protein in the livers of FASD mothers and male pups resulted in choline/methyl metabolite disruptions in offspring liver (decreased betaine) and brain (decreased glycerophosphocholine and sphingomyelin in male pups, and decreased phosphatidylcholine in both sexes). These results indicate that moderate folate supplementation downregulates MTHFR and alters choline/methyl metabolism, contributing to neurobehavioral alterations. Our findings support the negative impact of high FA on brain development, and may lead to improved guidelines on optimal folate levels during pregnancy.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Behavior, Animal/drug effects , Brain/metabolism , Dietary Supplements , Folic Acid/administration & dosage , Folic Acid/adverse effects , Liver/metabolism , Maternal Nutritional Physiological Phenomena/physiology , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Recommended Dietary Allowances , Sex Characteristics , Animals , Dose-Response Relationship, Drug , Female , Male , Maternal-Fetal Exchange , Memory Disorders/chemically induced , Mice, Inbred C57BL , Phosphatidylcholines/metabolism , Pregnancy , Sphingomyelins/metabolism
19.
Mol Nutr Food Res ; 64(9): e1901178, 2020 05.
Article in English | MEDLINE | ID: mdl-32110848

ABSTRACT

SCOPE: High-folic-acid diets during pregnancy result in obesity in the offspring, associated with altered DNA-methylation of hypothalamic food intake neurons. Like folic acid, the methyl-donor choline modulates foetal brain development, but its long-term programing effects on energy regulation remain undefined. This study aims to describe the effect of choline intake during pregnancy on offspring phenotype and hypothalamic energy-regulatory mechanisms. METHODS AND RESULTS: Wistar rat dams are fed an AIN-93G diet with recommended choline (RC, 1 g kg-1 diet), low choline (LC, 0.5-fold), or high choline (HC, 2.5-fold) during pregnancy. Male pups are terminated at birth and 17 weeks post-weaning. Brain 1-carbon metabolites, body weight, food intake, energy expenditure, plasma hormones, and protein expression of hypothalamic neuropeptides are measured. HC pups have higher expression of the orexigenic neuropeptide-Y neurons at birth, consistent with higher cumulative food intake and body weight gain post-weaning compared to RC and LC offspring. LC pups have lower leptin receptor expression at birth and lower energy expenditure and activity during adulthood. CONCLUSION: Choline content of diets that are consumed by rats during pregnancy affects the later-life phenotype of offspring, associated with altered in utero programing of hypothalamic food intake regulation.


Subject(s)
Choline/pharmacology , Energy Metabolism , Hypothalamus/metabolism , Prenatal Exposure Delayed Effects , Animals , Body Weight , Choline/metabolism , Eating , Female , Lactation , Male , Neuropeptides/metabolism , Pregnancy , Rats, Wistar , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...