Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Polymers (Basel) ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000714

ABSTRACT

A facile interconnected nanofibre electrode material derived from polybenzimidazol (PBI) was fabricated for a supercapacitor using a centrifugal spinning technique. The PBI solution in a mixture of dimethyl acetamide (DMA) and N, N-dimethylformamide (DMF) was electrospun to an interconnection of fine nanofibres. The as-prepared material was characterised by using various techniques, which include scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman, X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) among others. The specific surface area of the interconnected NCF material was noticed to be around 49 m2 g-1. Electrochemical properties of the material prepared as a single-electrode are methodically studied by adopting cyclic voltammetry, electrochemical impedance spectroscopy, and constant-current charge-discharge techniques. A maximum specific capacitance of 78.4 F g-1 was observed for the electrode at a specific current of 0.5 A g-1 in a 2.5 M KNO3 solution. The electrode could also retain 96.7% of its initial capacitance after a 5000 charge-discharge cycles at 5 A g-1. The observed capacitance and good cycling stability of the electrode are supported by its specific surface area, pore volume, and conductivity. The results obtained for this material indicate its potential as suitable candidate electrode for supercapacitor application.

2.
Anal Sci ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822950

ABSTRACT

A 5-day test duration makes BOD5 measurement unsatisfactory and hinders the development of a quick technique. Protein-like fluorescence peaks show a strong correlation between the BOD characteristics and the fluorescence intensities. For identifying and measuring BOD in surface water, a simultaneous absorbance-transmittance and fluorescence excitation-emission matrices (A-TEEM) method combined with PARAFAC (parallel factor) and PLS (partial least squares) analyses was developed using a tyrosine and tryptophan (tyr-trpt) mix as a surrogate analyte for BOD. The use of a surrogate analyte was decided upon due to lack of fluorescent BOD standards. Tyr-trpt mix standard solutions were added to surface water samples to prepare calibration and validation samples. PARAFAC analysis of excitation-emission matrices detected the tyr-trpt mix in surface water. PLS modelling demonstrated significant linearity (R2 = 0.991) between the predicted and measured tyr-trypt mix concentrations, and accuracy and robustness were all acceptable per the ICH Q2 (R2) and ASTM multivariate calibration/validation procedures guidelines. Based on a suitable and workable surrogate analyte method, these results imply that BOD can be detected and quantified using the A-TEEM-PARAFAC-PLS method. Very positive comparability between tyr-trypt mix concentrations was found, suggesting that tyr-trypt mix might eventually take the place of a BOD-based sampling protocol. Overall, this approach offers a novel tool that can be quickly applied in water treatment plant settings and is a step in supporting the trend toward rapid BOD determination in waters. Further studies should demonstrate the wide application of the method using real wastewater samples from various water treatment facilities.

3.
ACS Omega ; 9(24): 25625-25637, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911754

ABSTRACT

The addition of nanoparticles in amine solutions to produce a stable amine-based nanofluid provides a high surface area for absorption and improves the absorption rate. In this work, nanofluids were prepared by dispersing graphene oxide (GO) in monoethanolamine (MEA) and ethylenediamine (EDA) solutions for adsorption of carbon dioxide (CO2) to further improve their absorption performance by providing more reaction sites on the GO framework. GO was synthesized using the modified Hummers method and characterized for physicochemical properties using SEM, EDS, FTIR, Raman analysis, and TGA. The FTIR spectra for the GO nanoparticles before absorption showed peaks attributed to C-C, H-C, and C-O bonding. After the absorption experiments, the FTIR spectra of GO showed peaks due to C-O-NH2, N-O-N, and N-H bonding. The BET analysis further confirmed the decrease in the surface area, pore volume, and pore diameter of the GO recovered from the nanofluids after the CO2 experiment, indicating an interaction between GO and amine molecules. The absorption process of CO2 by the nanofluid was performed in a custom-made pressure chamber whereby the CO2 gas was in direct contact with the absorption fluids. The obtained adsorption rate constant (k) for the reaction between CO2 and 30% MEA and EDA solutions was 0.113 and 0.131, respectively. Upon addition of 0.2 mg/mL GO in the base solution, k increased to 0.16854 and 0.17603 for the MEA and EDA nanofluids, respectively. The proposed mechanism involves GO nanoparticles interacting with the amine groups through the oxygen-rich groups of GO. This results in the formation of a zwitterion that readily reacts with CO2, resulting in a carbamate.

4.
Chemosphere ; 360: 142347, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759802

ABSTRACT

Textile and cosmetic industries generate large amounts of dye effluents requiring treatment before discharge. This wastewater contains high levels of reactive dyes, low to none-biodegradable materials and chemical residues. Technically, dye wastewater is characterised by high chemical and biological oxygen demand. Biological, physical and pressure-driven membrane processes have been extensively used in textile wastewater treatment plants. However, these technologies are characterised by process complexity and are often costly. Also, process efficiency is not achieved in cost-effective biochemical and physical treatment processes. Membrane distillation (MD) emerged as a promising technology harnessing challenges faced by pressure-driven membrane processes. To ensure high cost-effectiveness, the MD can be operated by solar energy or low-grade waste heat. Herein, the MD purification of dye wastewater is comprehensively and yet concisely discussed. This involved research advancement in MD processes towards removal of dyes from industrial effluents. Also, challenges faced by this process with a specific focus on fouling are reviewed. Current literature mainly tested MD setups in the laboratory scale suggesting a deep need of further optimization of membrane and module designs in near future, especially for textile wastewater treatment. There is a need to deliver customized high-porosity hydrophobic membrane design with the appropriate thickness and module configuration to reduce concentration and temperature polarization (CP and TP). Also, energy loss should be minimized while increasing dye rejection and permeate flux. Although laboratory experiments remain pivotal in optimizing the MD process for treating dye wastewater, the nature of their time intensity poses a challenge. Given the multitude of parameters involved in MD process optimization, artificial intelligence (AI) methodologies present a promising avenue for assistance. Thus, AI-driven algorithms have the potential to enhance overall process efficiency, cutting down on time, fine-tuning parameters, and driving cost reductions. However, achieving an optimal balance between efficiency enhancements and financial outlays is a complex process. Finally, this paper suggests a research direction for the development of effective synthetic and natural dye removal from industrially discharged wastewater.


Subject(s)
Coloring Agents , Distillation , Membranes, Artificial , Textile Industry , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Distillation/methods , Coloring Agents/chemistry , Coloring Agents/isolation & purification , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Industrial Waste
5.
Biofouling ; 40(3-4): 245-261, 2024.
Article in English | MEDLINE | ID: mdl-38639133

ABSTRACT

Pathogenic bacteria in drinking-water pose a health risk to consumers, as they compromise the quality of portable water. Chemical disinfection of water containing dissolved organic matter (DOM) causes harmful disinfection by-products. In this work, 4-hydroxybenzoic acid (4-HBA) blended polyethersulfone membranes were fabricated and characterised using microscopic and spectroscopic techniques. The membranes were evaluated for the removal of bacteria and DOM from synthetic and environmental water. Permeate flux increased from 287.30 to 374.60 l m-2 h-1 at 3 bars when 4-HBA increased from 0 to 1.5 wt.%, suggesting that 4-HBA influenced the membrane's affinity for water. Furthermore, 4-HBA demonstrated antimicrobial properties by inhibiting bacterial growth. The membrane with 1 wt.% 4-HBA recorded 99.4 and 100% bacteria removal in synthetic and environmental water, respectively. Additionally, DOM removal of 55-73% was achieved. A flux recovery ratio (FRR) of 94.6% was obtained when a mixture of bacteria and humic acid was filtered, implying better fouling layer reversibility during cleaning. Furthermore, 100% FRR was achieved when a multimedia granular filtration step was installed prior to membrane filtration. The results illustrated that the membranes had a high permeate flux with low irreversible fouling. This indicated the potential of the membranes in treating complex feed streams using simple cleaning protocols.


Subject(s)
Bacteria , Biofilms , Biofouling , Fresh Water , Membranes, Artificial , Water Purification , Biofilms/drug effects , Biofilms/growth & development , Biofouling/prevention & control , Water Purification/methods , Fresh Water/microbiology , Bacteria/drug effects , Humic Substances/analysis , Filtration/methods , Parabens/chemistry , Sulfones/chemistry , Polymers/chemistry
6.
Proc Natl Acad Sci U S A ; 121(11): e2319390121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437562

ABSTRACT

Water-energy sustainability will depend upon the rapid development of advanced pressure-driven separation membranes. Although energy-efficient, water-treatment membranes are constrained by ubiquitous fouling, which may be alleviated by engineering self-cleaning membrane interfaces. In this study, a metal-polyphenol network was designed to direct the armorization of catalytic nanofilms (ca. 18 nm) on inert polymeric membranes. The chelation-directed mineralized coating exhibits high polarity, superhydrophilicity, and ultralow adhesion to crude oil, enabling cyclable crude oil-in-water emulsion separation. The in-place flux recovery rate exceeded 99.9%, alleviating the need for traditional ex situ cleaning. The chelation-directed nanoarmored membrane exhibited 48-fold and 6.8-fold figures of merit for in-place self-cleaning regeneration compared to the control membrane and simple hydraulic cleaning, respectively. Precursor interaction mechanisms were identified by density functional theory calculations. Chelation-directed armorization offers promise for sustainable applications in catalysis, biomedicine, environmental remediation, and beyond.

7.
J Hazard Mater ; 470: 134114, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38547755

ABSTRACT

Volatile organic compounds (VOCs) cause severe environmental pollution and are potentially toxic to humans who have no defense against exposure. Catalytic oxidation of these compounds has thus become an interesting research topic. In this study, microcrystalline CeMnO3 catalysts were prepared by a precipitant-concentration-induced strategy and evaluated for the catalytic oxidation of toluene/benzene. The effect of crystal size on catalytic performance was confirmed by XRD, TEM, N2 adsorption-desorption, XPS, Raman, H2-TPR, and TPSR. The CeMnO3 catalyst with more Mn3+-Ov-Ce4+ active sites exhibited enhanced VOCs catalytic oxidation performance, lowest active energy, and highest turnover frequency, which was attributed to its larger surface area, lower crystal size, higher low-temperature reducibility, and presence of more oxygen defects. In-situ FTIR results suggested more oxygen vacancies can profoundly promote the conversion of benzoate to maleate species, the rate-determining step of toluene oxidation. The work provides a convenient and efficient strategy to prepare single-metal or multi-metal oxide catalysts with smaller crystal sizes for VOC oxidation or other oxidation reactions.

8.
Environ Sci Pollut Res Int ; 31(3): 3394-3412, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38110684

ABSTRACT

Fluoroquinolones (FQs) are a class of broad-spectrum antimicrobial agents that are used to treat variety of infectious diseases. This class of antibiotics was being used for patients exhibiting early symptoms of a human respiratory disease known as the COVID-19 virus. As a result, this outbreak causes an increase in drug-resistant strains and environmental pollution, both of which pose serious threats to biota and human health. Thus, to ensure public health and prevent antimicrobial resistance, it is crucial to develop effective detection methods for FQs determination in water bodies even at trace levels. Due to their characteristics like specificity, selectivity, sensitivity, and low detection limits, electrochemical biosensors are promising future platforms for quick and on-site monitoring of FQs residues in a variety of samples when compared to conventional detection techniques. Despite their excellent properties, biosensor stability continues to be a problem even today. However, the integration of nanomaterials (NMs) could improve biocompatibility, stability, sensitivity, and speed of response in biosensors. This review concentrated on recent developments and contemporary methods in FQs biosensors. Furthermore, a variety of modification materials on the electrode surface are discussed. We also pay more attention to the practical applications of electrochemical biosensors for FQs detection. In addition, the existing challenges, outlook, and promising future perspectives in this field have been proposed. We hope that this review can serve as a bedrock for future researchers and provide new ideas for the development of electrochemical biosensors for antibiotics detection in the future.


Subject(s)
Biosensing Techniques , Nanostructures , Humans , Fluoroquinolones , Anti-Bacterial Agents , Nanostructures/chemistry , SARS-CoV-2 , Biosensing Techniques/methods , Electrochemical Techniques/methods
9.
Molecules ; 28(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894527

ABSTRACT

In the present protocol, we determined the presence and concentrations of bisphenol A (BPA) spiked in surface water samples using EEM fluorescence spectroscopy in conjunction with modelling using partial least squares (PLS) and parallel factor (PARAFAC). PARAFAC modelling of the EEM fluorescence data obtained from surface water samples contaminated with BPA unraveled four fluorophores including BPA. The best outcomes were obtained for BPA concentration (R2 = 0.996; standard deviation to prediction error's root mean square ratio (RPD) = 3.41; and a Pearson's r value of 0.998). With these values of R2 and Pearson's r, the PLS model showed a strong correlation between the predicted and measured BPA concentrations. The detection and quantification limits of the method were 3.512 and 11.708 micro molar (µM), respectively. In conclusion, BPA can be precisely detected and its concentration in surface water predicted using the PARAFAC and PLS models developed in this study and fluorescence EEM data collected from BPA-contaminated water. It is necessary to spatially relate surface water contamination data with other datasets in order to connect drinking water quality issues with health, environmental restoration, and environmental justice concerns.

10.
Sci Rep ; 13(1): 15108, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37704662

ABSTRACT

Anticorrosion and adsorption behaviour of synthesized carbohydrazide Schiff bases, namely (Z)-N'-(4-hydroxy-3-methoxybenzylidene)-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide(MBTC) and (Z)-N'-(3,4-dichlorobenzylidene)-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (CBTC) was examined for mild steel (MS) in 15% HCl medium. The corrosion inhibition study was performed by using gravimetric, thermodynamic, electrochemical and theoretical studies including density functional theory (DFT), molecular dynamic simulation (MDS) and Monte Carlo simulations (MCS). The outcomes in terms of corrosion inhibition efficiency using electrochemical impedance spectroscopy (EIS) method at 303 K and 150 ppm concentration were 96.75% for MBTC and 95.14% for CBTC. Both inhibitors adsorbed on the MS surface through physical as well as chemical adsorption and followed the Langmuir isotherm. The mixed-type nature of both inhibitors was identified by polarization results. Surface analysis was done using FESEM, EDX, AFM and XPS studies and results showed that a protective layer of inhibitor molecules was developed over the surface of MS. The results of DFT, MCS and MDS are in accordance with experimental results obtained by weight loss and electrochemical methods.

11.
Molecules ; 28(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630383

ABSTRACT

In this study, functionalized mesoporous silica was prepared and characterized as a stationary phase using various analytical and solid-state techniques, including a Fourier-transform infrared (FTIR) spectrometer, thermogravimetric analysis, and nitrogen sorption. The results confirmed the successful synthesis of the hybrid stationary phase. The potential of the prepared hybrid mesoporous silica as a solid-phase extraction (SPE) stationary phase for separating and enriching polycyclic aromatic hydrocarbons (PAHs) in both spiked water samples and real water samples was evaluated. The analysis involved extracting the PAHs from the water samples using solid-phase extraction and analyzing the extracts using a two-dimensional gas chromatograph coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). The synthesized sorbent exhibited outstanding performance in extracting PAHs from both spiked water samples and real water samples. In the spiked water samples, the recoveries of the PAHs ranged from 79.87% to 95.67%, with relative standard deviations (RSDs) ranging from 1.85% to 8.83%. The limits of detection (LOD) for the PAHs were in the range of 0.03 µg/L to 0.04 µg/L, while the limits of quantification (LOQ) ranged from 0.05 µg/L to 3.14 µg/L. Furthermore, all the calibration curves showed linearity, with correlation coefficients (r) above 0.98. Additionally, the results from real water samples indicated that the levels of individual PAH detected ranged from 0.57 to 12.31 µg/L with a total of 44.67 µg/L. These findings demonstrate the effectiveness of the hybrid mesoporous silica as a promising stationary phase for solid-phase extraction and sensitive detection of PAHs in water samples.

12.
Chem Commun (Camb) ; 59(47): 7232-7235, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37222002

ABSTRACT

Here, we designed a Mn3O4/CuOx heterostructure supported on copper foil (CF) for electrocatalytic nitrate reduction to ammonia. The selectivity and Faraday efficiency of ammonia were 96.79% and 86.55%, respectively. Multiple characterizations revealed that Mn3O4/CuOx/CF showed faster charge transfer and created more electron-deficient Mn sites, electron-rich Cu sites and large numbers of oxygen vacancies, which were conducive to improving the catalytic activity. This work may open an avenue for the construction of heterostructures as an electrocatalyst for the reduction of nitrate to ammonia.


Subject(s)
Ammonia , Nitrates , Copper , Electrons
13.
Angew Chem Int Ed Engl ; 62(23): e202302931, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37015013

ABSTRACT

Two-dimensional graphene oxide (GO) membranes are gaining popularity as a promising means to address global water scarcity. However, current GO membranes fail to sufficiently exclude angstrom-sized ions from solution. Herein, a de novo "posterior" interfacial polymerization (p-IP) strategy is reported to construct a tailor-made polyamide (PA) network in situ in an ultrathin GO membrane to strengthen size exclusion while imparting a positively charged membrane surface to repel metal ions. The electrostatic repulsion toward metal ions, coupled with the reinforced size exclusion, synergistically drives the high-efficiency metal ion separation through the synthesized positively charged GO framework (PC-GOF) membrane. This dual-mechanism-driven PC-GOF membrane exhibits superior metal ion rejection, anti-fouling ability, good operational stability, and ultra-high permeance (five times that of pristine GO membranes), enabling a sound step towards a sustainable water-energy-food nexus.

14.
Sci Total Environ ; 881: 163522, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37068672

ABSTRACT

In recent times, the need to make water safer and cleaner through the elimination of recalcitrant pharmaceutical residues has been the aim of many studies. Fluoroquinolone antibiotics such as ciprofloxacin, norfloxacin, enrofloxacin, and levofloxacin are among the commonly detected pharmaceuticals in wastewater. Since the presence of these pharmaceuticals in water bodies poses serious risks to living organisms, it is vital to adopt effective wastewater treatment techniques for their complete removal. Electrochemical technologies such as photoelectrocatalysis, electro-Fenton, electrocoagulation, and electrochemical oxidation have been established as techniques capable of the complete removal of organics including pharmaceuticals from wastewater. Hence, this review presents discussions on the recent progress (literature within 2018-2022) in the applications of common electrochemical processes for the degradation of fluoroquinolone antibiotics from wastewater. The fundamentals of these processes are highlighted while the results obtained using the processes are critically discussed. Furthermore, the inherent advantages and limitations of these processes in the mineralization of fluoroquinolone antibiotics are clearly emphasized. Additionally, appropriate recommendations are made toward improving electrochemical technologies for the complete removal of these pharmaceuticals with minimal energy consumption. Therefore, this review will serve as a bedrock for future researchers concerned with wastewater treatments to make informed decisions in the selection of suitable electrochemical techniques for the removal of pharmaceuticals from wastewater.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Fluoroquinolones , Oxidation-Reduction , Water , Water Purification/methods , Anti-Bacterial Agents , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry
15.
Environ Sci Pollut Res Int ; 30(6): 14062-14090, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36567393

ABSTRACT

Globally, ibuprofen is the third most consumed drug and its presence in the environment is a concern because little is known about its adverse effects on humans and aquatic life. Environmentalists have made monitoring and the detection of ibuprofen in biological and environmental matrices a priority. For the detection and monitoring of ibuprofen, sensors and biosensors have provided rapid analysis time, sensitivity, high-throughput screening, and real-time analysis. Researchers are increasingly seeking eco-friendly technology, and this has led to an interest in developing biodegradable, bioavailable, and non-toxic sensors, or biosensors. The integration of polymers into sensor systems has proven to significantly improve sensitivity, selectivity, and stability and minimize sample preparation using bioavailable and biodegradable polymers. This review provides a general overview of perspectives and trends of polymer-based sensors and biosensors for the detection of ibuprofen compared to non-polymer-based sensors.


Subject(s)
Biosensing Techniques , Ibuprofen , Humans , Wastewater , Polymers , Technology
16.
Membranes (Basel) ; 12(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36005677

ABSTRACT

In this study, Ag and Pd bimetallic nanoparticles were generated in situ in polyethersulfone (PES) dope solutions, and membranes were fabricated through a phase inversion method. The membranes were characterized for various physical and chemical properties using techniques such as FTIR, SEM, AFM, TEM, EDS, and contact angle measurements. The membranes were then evaluated for their efficiency in rejecting EOCs and resistance to protein fouling. TEM micrographs showed uniform distribution of Ag/Pd nanoparticles within the PES matrix, while SEM images showed uniform, fingerlike structures that were not affected by the presence of embedded nanoparticles. The presence of Ag/Pd nanoparticles resulted in rougher membranes. There was an increase in membrane hydrophilicity with increasing nanoparticles loading, which resulted in improved pure water permeability (37−135 Lm2h−1bar−1). The membranes exhibited poor salt rejection (<15%), making them less susceptible to flux decline due to concentration polarization. With a mean pore radius of 2.39−4.70 nm, the membranes effectively removed carbamazepine, caffeine, sulfamethoxazole, ibuprofen, and naproxen (up to 40%), with size exclusion being the major removal mechanism. Modifying the membranes with Ag/Pd nanoparticles improved their antifouling properties, making them a promising innovation for the treatment of pharmaceutical wastewater.

17.
Biofouling ; 38(5): 441-454, 2022 05.
Article in English | MEDLINE | ID: mdl-35686367

ABSTRACT

This work investigates the enhancement of antifouling properties of ceramic nanofiltration membranes by surface modification via atomic layer deposition (ALD) of TiO2. Feed solutions containing bovine serum albumin (BSA), humic acid (HA) and sodium alginate (SA) were used as model foulants. The classic fouling mechanism models and the modified fouling indices (MFI) were deduced from the flux decline profiles. Surface roughness values of the ALD coated and uncoated membranes were 63 and 71 nm, respectively, while the contact angles were 34.2 and 59.5°, respectively. Thus, coating increased the water affinity of the membrane surfaces and consequently improved the anti-fouling properties. The MFI values and the classic fouling mechanism correlation coefficients for cake filtration for the ALD coated and the uncoated membrane upon SA fouling were 42,963 (R2 = 0.82) and 143,365 sL-2 (R2 = 0.98), respectively, whereas the correlation coefficients for the combined foulants (SA + BSA + HA) were 267,185 (R2 = 0.99) and 9569 sL-2 (R2 = 0.37), respectively. The study showed that ALD can effectively enhance the antifouling properties of ceramic membranes.


Subject(s)
Biofouling , Water Purification , Alginates , Biofilms , Biofouling/prevention & control , Ceramics , Humic Substances/analysis , Membranes, Artificial , Serum Albumin, Bovine
18.
Environ Sci Pollut Res Int ; 29(55): 83452-83468, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35761140

ABSTRACT

Pyrolysis GC-ToF-MS-based analytical study was employed in the identification of microplastics (MPs) in the freshwater of a dam Rietvlei (RTV) located at Gauteng Province, South Africa. These MPs extracted in five locations of the dam were found to contain five different plastic polymeric constituents including PE, PS, PA, PVC and PET along with phthalate esters and fatty acid (amides and esters) derivatives as additives. Based on the fragmented pyrolyzate products, the contribution of plastic polymers and additives was 74% and 26% respectively. Among polymers, PA was dominant with 52% followed by PVC (16%) and others (13%) such as PE, PET and PS in MPs. Scanning electron micrographs of MPs in this aquatic body displayed the rough and fibrous typed patterns. The residual mass of 8-14% was left after the thermal degradation of MPs in RTV samples in the temperature range of 500-550 °C. The results of thermogravimetry (TGA) and energy-dispersive (EDS) analyses are mutually dependent and coherent to each other by way of demonstrating the presence of various inorganic compounds in the form of additives and/or sorbates. The lessened intensities of carbonyl stretching in PA (1625 cm-1) and PET (1725 cm-1) type of MPs attributed the occurrence of degradation and weathering in this aquatic system. The possible causes to the contamination of MPs in this freshwater are the located industries and poor waste management strategies being practised in this densely populated city. Based on the industry, waste management and population perspectives, the increased contamination of MPs is very likely in this freshwater which will drastically affect the ecosystem in the near future. Based on the characterisation results, the presence of various polymers, additives and the metals in MPs is envisaged to deteriorate the aquatic life along with successive risks for the people as a consequence of bio-magnification.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics/analysis , Pyrolysis , Polyvinyl Chloride , Ecosystem , South Africa , Water Pollutants, Chemical/analysis , Fresh Water/analysis , Gas Chromatography-Mass Spectrometry , Polymers , Esters/analysis , Environmental Monitoring/methods
19.
Aquat Toxicol ; 247: 106176, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35487150

ABSTRACT

The application of nanocomposite materials fabricated from titanium dioxide nanoparticles (TiO2 NPs) and different carbon (C) allotropes have gained popularity in water treatment applications due to their synergistic properties. Studies to date have focused on simple forms of nanomaterials (NMs), however, with the technology development, there is a dramatic increase in production and application of these complex NMs which could result in toxicological impacts on organisms when released into aquatic environments. This raises serious concerns about their safety and the need to ascertain their potential adverse effects on aquatic organisms. While conjugated TiO2 NPs/carbon-based nanohybrids (TiO2/C-NHs) may exhibit enhanced photocatalytic activity, there is no research in the scientific community regarding their toxicological effects on D. magna, which are indicators of freshwater pollution. In this study, two under-represented TiO2/C-NHs (i.e., TiO2- conjugated carbon nanofiber (CNF), and TiO2-conjugated multi-walled carbon nanotube (CNT)) were investigated for their toxic effects on D. magna, through a series of acute toxicity tests with a set of sublethal biochemical biomarkers of oxidative stress. The lethal toxicity and oxidative stress formation of TiO2/C-NHs over 48 h revealed a concentration-dependant increase in D. magna mortality. The primary mechanism identified was the generation of ROS, which was in line with toxicity results. Light microscopy and CytoViva® images visualized D. magna interaction with the NPs, which accumulated and appeared as dark materials in the lines of the gut tract. The collective results indicate that TiO2/C-NHs have the potential to cause an effect on freshwater organisms when released into the environment. However, the relevance of TiO2/C-NHs effects needs further chronic toxicity studies since they show promise to be used in nano-bioremediation materials to treat wastewaters.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Animals , Aquatic Organisms , Daphnia , Environmental Biomarkers , Fresh Water , Nanoparticles/chemistry , Nanoparticles/toxicity , Titanium/chemistry , Water Pollutants, Chemical/toxicity
20.
Water Environ Res ; 94(2): e10693, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35199396

ABSTRACT

This work presents the first comprehensive investigation of natural organic matter (NOM) fraction removal using ceramic membranes in South Africa. The rate of removal of bulk NOM (measured as UV254 and DOC % removal), the biodegradable dissolved organic carbon (BDOC) fraction, polarity-based fractions, and fluorescent dissolved organic carbon (FDOM) fractions was investigated from water abstracted from drinking water treatment plants (WTPs) in South Africa. Further, mechanisms of ceramic membrane fouling by waters of South Africa were studied. Ceramic membranes removed more than 80% DOC from samples from coastal WTPs, whereas for inland plants, the removal was between 60% and 75% of DOC. FDOM was removed to at least 80% regardless of the site of the plant. The BDOC removal by the ceramic membranes was above 85%. The hydrophobic fraction was the most amenable to removal by ceramic membranes regardless of the site of sample abstraction (above 60% for all sites). The freshness index (ß:α) correlated strongly to UV254 removal (R2 = 0.96), thus UV254 removal can serve as a proxy for the susceptibility to removal of such class of NOM by ceramic membranes. This investigation demonstrated that ceramic membranes could be a valuable technology if integrated into the existing WTPs. PRACTITIONER POINTS: The removal of bulk parameters by ceramic membrane was greater than unit conventional processes used in all the sampled water treatment plants. The hydrophobic polarity-based fraction of NOM was the most amenable to removal by ceramic membranes regardless of the site of the WTP. Polarity-based fractions, aromaticity, and initial DOC had a combined influence on the removal of organic matter by ceramic membranes as explained by principal component three.


Subject(s)
Drinking Water , Water Purification , Ceramics , Filtration , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...