Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Physiol Mol Biol Plants ; 25(2): 569-579, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30956437

ABSTRACT

An efficient plantlet regeneration protocol using immature zygotic embryos (IZEs) via somatic embryogenesis has been developed in Pterocarpus marsupium Roxb. The regenerated plantlets were evaluated for their genetic stability. IZEs were incubated on Murashige and Skoog (MS) media augmented with 1.07-16.11 µM naphthalene acetic acid (NAA) or 0.90-13.97 µM 2,4-dichlorophenoxyacetic acid. The optimum callus induction (96.6%) was observed on MS medium augmented with 5.37 µM NAA. Induction of somatic embryos (SEs) was observed after sub-culture of calli on medium with decreased concentrations of NAA (0.54-5.37 µM), either alone or 2.69 µM NAA in combination with 2.22-8.90 µM benzyladenine (BA) or 2.32-9.30 µM Kinetin. Maximum number (33.4 ± 0.85) of SEs occurred on MS medium augmented with 2.69 µM NAA + 4.40 µM BA + 3% sucrose. Highest percentage (67.3 ± 0.37) of SEs matured and developed into cotyledonary stage by subsequent subculture on the same medium. SE formation and maturation decreased when sucrose concentrations were higher than 3%. Seventy percent of mature somatic embryos developed into plantlets on half strength MS medium augmented with 5.80 µM gibberellic acid. The various stages of development during somatic embryogenesis include  globular, heart, torpedo and mature stages as revealed by the stereomicroscopic and histological studies of explants. Plantlets derived from SEs were successfully acclimatized in the greenhouse with a survival rate of 78%. Among the survived plantlets, 9 plantlets were randomly selected for inter-simple sequence repeat (ISSR) analysis. Of the 13 primers used, 8 produced reproducible and monomorphic bands. ISSR analysis revealed a homogenous amplification profile for all regenerated plantlets analyzed validating the genetic stability of somatic embryo derived plantlets.

2.
PLoS One ; 11(5): e0152730, 2016.
Article in English | MEDLINE | ID: mdl-27144586

ABSTRACT

The brown marmorated stink bug (Halyomorpha halys) has emerged as one of the most important invasive insect pests in the United States. Functional genomics in H. halys remains unexplored as molecular resources in this insect have recently been developed. To facilitate functional genomics research, we evaluated ten common insect housekeeping genes (RPS26, EF1A, FAU, UBE4A, ARL2, ARP8, GUS, TBP, TIF6 and RPL9) for their stability across various treatments in H. halys. Our treatments included two biotic factors (tissues and developmental stages) and two stress treatments (RNAi injection and starvation). Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). The qRT-PCR results indicated ARP8 and UBE4A exhibit the most stable expression across tissues and developmental stages, ARL2 and FAU for dsRNA treatment and TBP and UBE4A for starvation treatment. Following the dsRNA treatment, all genes except GUS showed relatively stable expression. To demonstrate the utility of validated reference genes in accurate gene expression analysis and to explore gene silencing in H. halys, we performed RNAi by administering dsRNA of target gene (catalase) through microinjection. A successful RNAi response with over 90% reduction in expression of target gene was observed.


Subject(s)
Heteroptera/genetics , RNA Interference , Animals , Gene Expression Profiling , Genes, Insect , Reverse Transcriptase Polymerase Chain Reaction
3.
PLoS One ; 10(8): e0134890, 2015.
Article in English | MEDLINE | ID: mdl-26244340

ABSTRACT

For real-time reverse transcription-PCR (qRT-PCR) in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2) in soybean under biotic stress from Bean pod mottle virus (BPMV), powdery mildew (PMD), soybean aphid (SBA), and two-spotted spider mite (TSSM). BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3) values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant/genetics , Glycine max/genetics , Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Algorithms , Animals , Aphids/physiology , Ascomycota/physiology , Comovirus/physiology , Computational Biology/methods , Host-Pathogen Interactions , Mites/physiology , Plant Diseases/microbiology , Plant Diseases/parasitology , Plant Diseases/virology , Plant Viruses/physiology , Reference Standards , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/standards , Software , Glycine max/parasitology , Glycine max/virology
4.
PLoS One ; 8(2): e56555, 2013.
Article in English | MEDLINE | ID: mdl-23424668

ABSTRACT

BACKGROUND: Insects rely on olfaction to locate food, mates, and suitable oviposition sites for successful completion of their life cycle. Agrilus planipennis Fairmaire (emerald ash borer) is a serious invasive insect pest that has killed tens of millions of North American ash (Fraxinus spp) trees and threatens the very existence of the genus Fraxinus. Adult A. planipennis are attracted to host volatiles and conspecifics; however, to date no molecular knowledge exists on olfaction in A. planipennis. Hence, we undertook an antennae-specific transcriptomic study to identify the repertoire of odor processing genes involved in A. planipennis olfaction. METHODOLOGY AND PRINCIPAL FINDINGS: We acquired 139,085 Roche/454 GS FLX transcriptomic reads that were assembled into 30,615 high quality expressed sequence tags (ESTs), including 3,249 isotigs and 27,366 non-isotigs (contigs and singletons). Intriguingly, the majority of the A. planipennis antennal transcripts (59.72%) did not show similarity with sequences deposited in the non-redundant database of GenBank, potentially representing novel genes. Functional annotation and KEGG analysis revealed pathways associated with signaling and detoxification. Several odor processing genes (9 odorant binding proteins, 2 odorant receptors, 1 sensory neuron membrane protein and 134 odorant/xenobiotic degradation enzymes, including cytochrome P450s, glutathione-S-transferases; esterases, etc.) putatively involved in olfaction processes were identified. Quantitative PCR of candidate genes in male and female A. planipennis in different developmental stages revealed developmental- and sex-biased expression patterns. CONCLUSIONS AND SIGNIFICANCE: The antennal ESTs derived from A. planipennis constitute a rich molecular resource for the identification of genes potentially involved in the olfaction process of A. planipennis. These findings should help in understanding the processing of antennally-active compounds (e.g. 7-epi-sesquithujene) previously identified in this serious invasive pest.


Subject(s)
Coleoptera/genetics , Genes, Insect/genetics , Odorants , Transcriptome , Amino Acid Sequence , Animals , Base Sequence , Coleoptera/physiology , Cues , Female , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Molecular Sequence Data , Receptors, Odorant/chemistry , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Sequence Analysis , Sexual Behavior, Animal
5.
Article in English | MEDLINE | ID: mdl-23416179

ABSTRACT

The molecular genetics of inward-rectifier potassium (Kir) channels in insects is poorly understood. To date, Kir channel genes have been characterized only from a few representative dipterans (i.e., fruit flies and mosquitoes). The goal of the present study was to characterize Kir channel cDNAs in a hemipteran, the bed bug (Cimex lectularius). Using our previously reported bed bug transcriptome (RNA-seq), we identified two cDNAs that encode putative Kir channels. One was a full-length cDNA that encodes a protein belonging to the insect 'Kir3' clade, which we designate as 'ClKir3'. The other was a partial cDNA that encodes a protein with similarity to both the insect 'Kir1' and 'Kir2' clades, which we designate as 'ClKir1/2'. Quantitative real-time PCR analysis revealed that ClKir1/2 and ClKir3 exhibited peak expression levels in late-instar nymphs and early-instar nymphs, respectively. Furthermore, ClKir3, but not ClKir1/2, showed tissue-specific expression in Malpighian tubules of adult bed bugs. Lastly, using an improved procedure for delivering double-stranded RNA (dsRNA) to male and female bed bugs (via the cervical membrane) we demonstrate rapid and systemic knockdown of ClKir3 transcripts. In conclusion, we demonstrate that the bed bug possesses at least two genes encoding Kir channels, and that RNAi is possible for at least Kir3, thereby offering a potential approach for elucidating the roles of Kir channel genes in bed bug physiology.


Subject(s)
Bedbugs/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Amino Acid Sequence , Animals , Bedbugs/genetics , Female , Male , Molecular Sequence Data , Potassium Channels, Inwardly Rectifying/metabolism
6.
J Insect Physiol ; 58(12): 1626-34, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23063500

ABSTRACT

The potato leafhopper, Empoasca fabae, is a pest of economic crops in the United States and Canada, where it causes damage known as hopperburn. Saliva, along with mechanical injury, leads to decreases in gas exchange rates, stunting and chlorosis. Although E. fabae saliva is known to induce plant responses, little knowledge exists of saliva composition at the molecular level. We subjected the salivary glands of E. fabae to Roche 454-pyrosequencing which resulted significant number (30,893) of expressed sequence tags including 2805 contigs and 28,088 singletons. A high number of sequences (78%) showed similarity to other insect species in GenBank, including Triboliumcastaneum, Drosophilamelanogaster and Acrythosiphonpisum. KEGG analysis predicted the presence of pathways for purine and thiamine metabolic, biosynthesis of secondary metabolites, drug metabolism, and lysine degradation. Pfam analysis showed a high number of cellulase and carboxylesterase protein domains. Expression analysis of candidate genes (alpha amylase, lipase, pectin lyase, etc.) among different tissues revealed tissue-specific expression of digestive enzymes in E. fabae. This is the first study to characterize the sialotranscriptome of E. fabae and the first for any species in the family of Cicadellidae. Due to the status of these insects as economic pests, knowledge of which genes are active in the salivary glands is important for understanding their impact on host plants.


Subject(s)
Hemiptera/metabolism , Salivary Glands/metabolism , Animals , Gene Expression Profiling , Genes, Insect , Hemiptera/genetics , Insect Proteins , Protein Structure, Tertiary , Transcriptome
7.
J Econ Entomol ; 105(4): 1432-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22928326

ABSTRACT

Quantitative real-time polymerase chain reaction (qRT-PCR) is a common and robust tool for accurate quantification of mRNA transcripts. To normalize results, a housekeeping gene ([HKG], reference gene or endogenous control gene) is mandatory. Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a significant soybean, Glycine max (L.) Merr., pest, yet gene expression and functional genomics studies are hindered by a lack of stable HKGs. We evaluated seven potential HKGs (SDFS, succinate dehydrogenase flavoprotein subunit; EF1a, elongation factor-la; HEL, helicase; GAPDH, glyceraldehyde-3 phosphate dehydrogenase; RPS9, ribosomal protein S9; TBP, TATA-box binding protein; and UBQ, ubiquitin-conjugating protein) to determine the most efficient HKGs that have stable expression among tissues, developmental stages, and aphids fed on susceptible and host plant-resistant soybean. HKG stability was determined using GeNorm and NormFinder. Results from three different experimental conditions revealed high stability of TBP compared with the other HKGs profiled across the samples assayed. RPS9 showed stable expression among aphids on susceptible and resistant plants, whereas EF1a showed stable expression in tissues and developmental stages. Therefore, we recommend the TBP as a suitable HKG for efficient normalization among treatments, tissues, and developmental stages of A. glycines. In addition, RPS9 may be used for host-plant resistance experiments and EF1a could be considered for testing differential expression across tissues or developmental stages. These results will enable a more accurate and reliable normalization of qRT-PCR data in A. glycines.


Subject(s)
Aphids/genetics , Gene Expression , Genes, Essential , Insect Proteins/genetics , Animals , Aphids/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Insect Proteins/metabolism , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Ribosomal Protein S9 , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
8.
BMC Genomics ; 13: 6, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22226239

ABSTRACT

BACKGROUND: Bed bugs (Cimex lectularius) are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. RESULTS: We performed a next-generation RNA sequencing (RNA-Seq) experiment to find differentially expressed genes between pesticide-resistant (PR) and pesticide-susceptible (PS) strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs) was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs) and our previous 454 pyrosequenced database (21,088 ESTs). The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase) involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2) revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. CONCLUSIONS: We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in C. lectularius. Future research that is targeted towards RNA interference (RNAi) on the identified metabolic targets such as cytochrome P450s and cuticular proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in C. lectularius.


Subject(s)
Bedbugs/genetics , Drug Resistance/genetics , Insecticides/chemistry , Animals , Binding Sites , Catalytic Domain , Computer Simulation , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Databases, Genetic , Expressed Sequence Tags , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Molecular Sequence Data , Mutation , Sequence Analysis, RNA , Transcriptome
9.
J Med Entomol ; 48(4): 947-51, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21845960

ABSTRACT

Quantitative real-time polymerase chain reaction (qRT-PCR) has emerged as robust methodology for gene expression studies, but reference genes are crucial for accurate normalization. Commonly used reference genes are housekeeping genes that are thought to be nonregulated; however, their expression can be unstable across different experimental conditions. We report the identification and validation of suitable reference genes in the bed bug, Cimex lectularius, by using qRT-PCR. The expression stability of eight reference genes in different tissues (abdominal cuticle, midgut, Malpighian tubules, and ovary) and developmental stages (early instar nymphs, late instar nymphs, and adults) of pesticide-susceptible and pesticide-exposed C. lectularius were analyzed using geNorm, NormFinder, and BestKeeper. Overall expression analysis of the eight reference genes revealed significant variation among samples, indicating the necessity of validating suitable reference genes for accurate quantification of mRNA transcripts. Ribosomal protein (RPL18) exhibited the most stable gene expression across all the tissue and developmental-stage samples; a-tubulin revealed the least stability across all of the samples examined. Thus, we recommend RPL18 as a suitable reference gene for normalization in gene expression studies of C. lectularius.


Subject(s)
Bedbugs/genetics , Gene Expression Profiling/standards , Polymerase Chain Reaction/standards , Aging , Animals , Bedbugs/growth & development , Genes, Insect , RNA, Messenger/genetics , Reference Standards , Ribosomal Proteins/analysis , Ribosomal Proteins/genetics
10.
J Insect Physiol ; 57(6): 819-24, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21439289

ABSTRACT

Phytophagous insects frequently encounter reactive oxygen species (ROS) from exogenous and endogenous sources. To overcome the effect of ROS, insects have evolved a suite of antioxidant defense genes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione peroxidase (GPX). The emerald ash borer (Agrilus planipennis Fairmaire), an exotic invasive insect pest from Asia has killed millions of ash trees and continues to invade North America at a rapid pace. From an on-going expressed sequence tag (EST) project of A. planipennis larval tissues, we identified ESTs coding for a Cu-Zn SOD (ApSOD1), a CAT (ApCAT1) and a GPX (ApGPX1). A multiple sequence alignment of the derived A. planipennis sequences revealed high homology with other insect sequences at the amino acid level. Phylogenetic analysis of ApSOD1 grouped it with Cu-Zn SODs of other insect taxa. Quantitative real time PCR (qRT-PCR) analysis in different larval tissues (midgut, fat body, Malpighian tubule and cuticle) revealed high mRNA levels of ApCAT1 in the midgut. Interestingly, high mRNA levels for both ApSOD1 and ApGPX1 were observed in the Malpighian tubules. Assay of mRNA levels in developmental stages (larva, prepupa and adults) by qRT-PCR indicated high transcript levels of ApCAT1 and ApGPX1 in larval and prepupal stages with a decline in adults. On the other hand, the transcript levels of ApSOD1 were observed to be constitutive in all the developmental stages assayed. Results obtained reflect a plausible role of these A. planipennis antioxidant genes in quenching ROS from both diet (ash allelochemicals) as well as endogenous sources. These studies further help in understanding the adaptation/invasiveness of A. planipennis.


Subject(s)
Antioxidants/metabolism , Coleoptera/enzymology , Coleoptera/genetics , Fraxinus/parasitology , Gene Expression Profiling , Insect Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Coleoptera/chemistry , Coleoptera/metabolism , Expressed Sequence Tags , Insect Proteins/chemistry , Insect Proteins/metabolism , Molecular Sequence Data , Plant Diseases/parasitology , Sequence Alignment
11.
PLoS One ; 6(1): e16368, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21283712

ABSTRACT

BACKGROUND: Ash (Fraxinus spp.) is a dominant tree species throughout urban and forested landscapes of North America (NA). The rapid invasion of NA by emerald ash borer (Agrilus planipennis), a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra), green (F. pennsylvannica) and white (F. americana) are highly susceptible, the Asian species Manchurian ash (F. mandshurica) is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3) revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. CONCLUSIONS AND SIGNIFICANCE: The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis, and in future ash breeding programs for marker development.


Subject(s)
Fraxinus/genetics , Gene Expression Profiling , Phloem/genetics , Animals , Coleoptera , Fraxinus/parasitology , Microsatellite Repeats , Plant Immunity/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
12.
PLoS One ; 6(1): e16336, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21283830

ABSTRACT

BACKGROUND: Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide resistance. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons). Nearly 85.9% of the C. lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase (GST), revealed high transcript levels for the cytochrome P450 (CYP9) in pesticide-exposed versus pesticide-susceptible C. lectularius populations. A significant number of single nucleotide polymorphisms (296) and microsatellite loci (370) were predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the database. CONCLUSIONS: To our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for future functional genomics studies.


Subject(s)
Bedbugs/genetics , Gene Expression Profiling/methods , Insecticide Resistance/genetics , RNA, Messenger/analysis , Animals , Ectoparasitic Infestations , Expressed Sequence Tags , Insecticides/pharmacology , Microsatellite Repeats , Polymorphism, Single Nucleotide , Sequence Analysis , United States
13.
Insects ; 2(1): 36-48, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-26467498

ABSTRACT

Blood-feeding insects have evolved resistance to various insecticides (organochlorines, pyrethroids, carbamates, etc.) through gene mutations and increased metabolism. Bed bugs (Cimex lectularius) are hematophagous ectoparasites that are poised to become one of the major pests in households throughout the United States. Currently, C. lectularius has attained a high global impact status due to its sudden and rampant resurgence. Resistance to pesticides is one factor implicated in this phenomenon. Although much emphasis has been placed on target sensitivity, little to no knowledge is available on the role of key metabolic players (e.g., cytochrome P450s and glutathione S-transferases) towards pesticide resistance in C. lectularius. In this review, we discuss different modes of resistance (target sensitivity, penetration resistance, behavioral resistance, and metabolic resistance) with more emphasis on metabolic resistance.

14.
PLoS One ; 5(10): e13708, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-21060843

ABSTRACT

BACKGROUND: The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. METHODOLOGY AND PRINCIPAL FINDINGS: Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. CONCLUSIONS AND SIGNIFICANCE: To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis.


Subject(s)
Coleoptera/genetics , Gene Expression Profiling , Insect Proteins/genetics , Animals , Expressed Sequence Tags
SELECTION OF CITATIONS
SEARCH DETAIL
...