Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35312618

ABSTRACT

Traditional beamforming of medical ultrasound images relies on sampling rates significantly higher than the actual Nyquist rate of the received signals. This results in large amounts of data to store and process, imposing hardware and software challenges on the development of ultrasound machinery and algorithms, and impacting the resulting performance. In light of the capabilities demonstrated by deep learning methods over the past years across a variety of fields, including medical imaging, it is natural to consider their ability to recover high-quality ultrasound images from partial data. Here, we propose an approach for deep-learning-based reconstruction of B-mode images from temporally and spatially sub-sampled channel data. We begin by considering sub-Nyquist sampled data, time-aligned in the frequency domain and transformed back to the time domain. The data are further sampled spatially so that only a subset of the received signals is acquired. The partial data is used to train an encoder-decoder convolutional neural network (CNN), using as targets minimum-variance (MV) beamformed signals that were generated from the original, fully-sampled data. Our approach yields high-quality B-mode images, with up to two times higher resolution than previously proposed reconstruction approaches (NESTA) from compressed data as well as delay-and-sum (DAS) beamforming of the fully-sampled data. In terms of contrast-to- noise ratio (CNR), our results are comparable to MV beamforming of the fully-sampled data, and provide up to 2 dB higher CNR values than DAS and NESTA, thus enabling better and more efficient imaging than what is used in clinical practice today.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted , Algorithms , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Ultrasonography/methods
2.
Article in English | MEDLINE | ID: mdl-34699355

ABSTRACT

Efficient ultrasound (US) systems that produce high-quality images can improve current clinical diagnosis capabilities by making the imaging process much more affordable and accessible to users. The most common technique for generating B-mode US images is delay-and-sum (DAS) beamforming, where an appropriate delay is introduced to signals sampled and processed at each transducer element. However, sampling rates that are much higher than the Nyquist rate of the signal are required for high-resolution DAS beamforming, leading to large amounts of data, making remote processing of channel data impractical. Moreover, the production of US images that exhibit high resolution and good image contrast requires a large set of transducer elements, which further increases the data size. Previous works suggest methods for reduction in sampling rate and in array size. In this work, we introduce compressed Fourier domain convolutional beamforming, combining Fourier domain beamforming (FDBF), sparse convolutional beamforming, and compressed sensing methods. This allows reducing both the number of array elements and the sampling rate in each element while achieving high-resolution images. Using in vivo data, we demonstrate that the proposed method can generate B-mode images using 142 times less data than DAS. Our results pave the way toward efficient US and demonstrate that high-resolution US images can be produced using sub-Nyquist sampling in time and space.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Transducers , Ultrasonography/methods
3.
Article in English | MEDLINE | ID: mdl-34185640

ABSTRACT

The most common technique for generating B-mode ultrasound (US) images is delay-and-sum (DAS) beamforming, where the signals received at the transducer array are sampled before an appropriate delay is applied. This necessitates sampling rates exceeding the Nyquist rate and the use of a large number of antenna elements to ensure sufficient image quality. Recently, we proposed methods to reduce the sampling rate and the array size relying on image recovery using iterative algorithms based on compressed sensing (CS) and the finite rate of innovation (FRI) frameworks. Iterative algorithms typically require a large number of iterations, making them difficult to use in real time. In this article, we propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, which is based on unfolding the iterative shrinkage thresholding algorithm (ISTA), resulting in an efficient and interpretable deep network. The inputs to our network are the subsampled beamformed signals after summation and delay in the frequency domain, requiring only a subset of the US signal to be stored for recovery. Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high-quality imaging performance. Using in vivo data, we demonstrate that the proposed method yields high-quality images while reducing the data volume traditionally used up to 36 times. In terms of image resolution and contrast, our technique outperforms previously suggested methods as well as DAS and minimum-variance (MV) beamforming, paving the way to real-time applicable recovery methods.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Phantoms, Imaging , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL