Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(46): e2307186, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619540

ABSTRACT

The delicate design of innovative and sophisticated fibers with vertical porous skeleton and eminent electrochemical activity to generate directional ionic pathways and good faradic charge accessibility is pivotal but challenging for realizing high-performance fiber-shaped supercapacitors (FSCs). Here, hierarchically ordered hybrid fiber combined vertical-aligned and conductive Ti3 C2 Tx MXene (VA-Ti3 C2 Tx ) with interstratified electroactive covalent organic frameworks LZU1 (COF-LZU1) by one-step microfluidic synthesis is developed. Due to the incorporation of vertical channels, abundant redox active sites and large accessible surface area throughout the electrode, the VA-Ti3 C2 Tx @COF-LZU1 fibers express exceptional gravimetric capacitance of 787 F g-1 in a three-electrode system. Additionally, the solid-state asymmetric FSCs deliver a prominent energy density of 27 Wh kg-1 , capacitance of 398 F g-1 and cycling life of 20 000 cycles. The key to high energy storage ability originates from the decreased ions adsorption energy and ameliorative charge density distribution in vertically aligned and active hybrid fiber, accelerating ions transportation/accommodation and interfacial electrons transfer. Benefiting from excellent electrochemical performance, the FSCs offer sufficient energy supply to power watches, flags, and digital display tubes as well as be integrated with sensors to detect pulse signals, which opens a promising route for architecting advanced fiber toward the carbon neutrality market beyond energy-storage technology.

2.
Nanomaterials (Basel) ; 13(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446419

ABSTRACT

With the rapid development of electronic and communication technology for military radars, the demand for microwave-absorbing materials in the low-frequency range with thin layers is growing. In this study, flexible Co3O4/CC (carbon cloth) composites derived from Co-MOFs (metal-organic frameworks) and CC are prepared using hydrothermal and thermal treatment processes. The flexible precursors of the Co-MOFs/CC samples are calcined with different calcination temperatures, for which the material structure, dielectric properties, and microwave absorption performance are changed. With the increases in calcination temperature, the minimum reflection loss of the corresponding Co3O4/CC composites gradually moves to the lower frequency with a thinner thickness. In addition, the Co3O4/CC composites with the 25 wt% filler loading ratio exhibit the minimum reflection loss (RL) of -46.59 dB at 6.24 GHz with a 4.2 mm thickness. When the thickness is 3.70 mm, the effective absorption bandwidth is 3.04 GHz from 5.84 to 8.88 GHz. This study not only proves that the Co3O4/CC composite is an outstanding microwave-absorbing material with better flexibility but also provides useful inspiration for research on wideband microwave absorption materials below 10 GHz.

3.
ACS Appl Mater Interfaces ; 15(22): 26910-26917, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37246367

ABSTRACT

Graphdiyne (GDY) has realized significant achievements in lithium-ion batteries (LIBs) because of its unique π-conjugated skeleton with sp- and sp2-hybridized carbon atoms. Enriching the accessible surface areas and diffusion pathways of Li ions can realize more storage sites and rapid transport dynamics. Herein, three-dimensional porous hydrogen-substituted GDY (HsGDY) is developed for high-performance Li-ion storage. HsGDY, fabricated via a versatile interface-assisted synthesis strategy, exhibits a large specific surface area (667.9 m2 g-1), a hierarchical porous structure, and an expanded interlayer space, which accelerate Li-ion accessibility and lithiation/delithiation. Owing to this high π-conjugated, conductive, and porous framework, HsGDY exhibits a large reversible capacity (930 mA h g-1 after 100 cycles at 1 A g-1), superior cycle (720 mA h g-1 after 300 cycles at 1 A g-1), and rate (490 mA h g-1 at 5 A g-1) performances. Density functional theory calculations of the low diffusion barrier in the lamination and vertical directions further reveal the fast Li-ion transport kinetics of HsGDY. Additionally, a LiCoO2-HsGDY full cell is constructed, which exhibits a good practical charge/discharge capacity of 128 mA h g-1 and stable cycling behavior. This study highlights the advanced design of next-generation LIBs to sustainably develop the new energy industry.

4.
Angew Chem Int Ed Engl ; 62(20): e202301618, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36916126

ABSTRACT

Fiber-shaped supercapacitors (FSCs) have become one of the significantly strategical flexible energy-storage materials towards future wearable textile electronics and metaverse technologies. Here, we develop the high-performance FSCs based on multiscale dot-wire-sheet heterostructure microfiber of nitrogen-doped carbon dots-Ti3 C2 Tx /silk nanofibers (NCDs-Ti3 C2 Tx /SNFs) hybrids via microfluidic fabrication. Due to the enlarged interlayer spacing, plentiful porous channels, accelerated H+ ion transport dynamics, large electrical conductivity and excellent mechanical strength/flexibility, the NCDs-Ti3 C2 Tx /SNFs possesses high volumetric capacitance (2218.7 F cm-3 ) and reversible charge-discharge stability in 1 M H2 SO4 electrolyte. Furthermore, the solid-state FSCs present high energy density (57.9 mWh cm-3 ), good capacitance (1157 F cm-3 ), long-life cycles (82.3 % capacitance retention after 40000 cycles), which realize the actual energy-supply applications (powering lamp, watch and toy car).

5.
Angew Chem Int Ed Engl ; 61(27): e202203765, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35426464

ABSTRACT

Realizing high energy-density and actual applications of fibre-based electrochemical supercapacitors (FESCs) are pivotal but challenging, as the ability to construct advanced fibres for accelerating charges kinetic diffusion and Faradaic storage remain key bottlenecks. Here, we demonstrate high-performance FESCs based on hetero-structured polymetallic oxides/porous graphene core-sheath fibres, where the large pseudo-active polymetallic oxide (PMO) sheath is uniformly loaded on a hierarchical porous graphene fibre (PGF) core. Due to the abundant micro-/mesoporous pathways, large accessible surface, excellent redox activity and good interface electron conduction, the PMO-PGF possesses high areal capacitance (2959.78 mF cm-2 ) and manageable Faradaic reversibility in a 6 M KOH electrolyte. Furthermore, the PMO-PGF-based solid-state FESCs present high energy-density (187.22 µ Wh cm-2 ), long-life cycles (95.8 % capacitive retention after 20 000 cycles), diverse-powered capabilities and actual energy-supply applications.

6.
J Am Chem Soc ; 143(39): 16206-16216, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34570466

ABSTRACT

Osmotic energy stored between seawater and freshwater is a clean and renewable energy source. However, developing high-efficiency and durable permselective membranes for harvesting osmotic energy remains a longstanding bottleneck. Herein, we report that a nanocomposite membrane with a biological serosa-mimetic structure can achieve high-performance osmotic energy generation through the coupling of two-dimensional (2D) sulfonated covalent organic framework (COF) nanosheets and anion-grafted aramid nanofibers (ANFs). As verified by theoretical calculations and experimental investigations, the 2D COF nanosheets not only provide abundant one-dimensional (1D)/2D nanofluidic channels to synergistically benefit an ultrafast ion migration but also enable high cation permselectivity via the covalently tethered anions. The grafted ANFs increase the mechanical strength of the membrane and further improve the ion diffusion/rectification. When it was applied in an osmotic power generator, the biomimetic membrane delivered a power density of 9.6 W m-2, far surpassing the commercial benchmark of 5.0 W m-2. This work could boost the viability of osmotic energy conversion toward a sustainable future.

7.
Nano Lett ; 20(5): 3769-3777, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32255351

ABSTRACT

Cost-effective material with a rational design is significant for both sodium-ion batteries (SIBs) and electromagnetic wave (EMW) absorption. Herein, we report an elaborate yolk-shell FeS2@C nanocomposite as a promising material for application in both SIBs and EMW absorption. When applied as an anode material in SIBs, the yolk-shell structure not only facilitates a fast electron transport and shortens Na ion diffusion paths but also eases the huge volume change of FeS2 during repeated discharge/charge processes. The as-developed FeS2@C exhibits a high specific capacity of 616 mA h g-1 after 100 cycles at 0.1 A g-1 with excellent rate performance. Furthermore, owing to the significant cavity and interfacial effects enabled by yolk-shell structuring, the FeS2@C nanocomposite delivers excellent EMW absorption properties with a strong reflection loss (-45 dB with 1.45 mm matching thickness) and a broad 15.4 GHz bandwidth. This work inspires the development of high-performance bifunctional materials.

8.
Nanomicro Lett ; 12(1): 102, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-34138083

ABSTRACT

Magnetic/dielectric@porous carbon composites, derived from metal-organic frameworks (MOFs) with adjustable composition ratio, have attracted wide attention due to their unique magnetoelectric properties. In addition, MOFs-derived porous carbon-based materials can meet the needs of lightweight feature. This paper reports a simple process for synthesizing stacked CoxNiy@C nanosheets derived from CoxNiy-MOFs nanosheets with multiple interfaces, which is good to the microwave response. The CoxNiy@C with controllable composition can be obtained by adjusting the ratio of Co2+ and Ni2+. It is supposed that the increased Co content is benefit to the dielectric and magnetic loss. Additionally, the bandwidth of CoNi@C nanosheets can take up almost the whole Ku band. Moreover, this composite has better environmental stability in air, which characteristic provides a sustainable potential for the practical application.

9.
ACS Appl Mater Interfaces ; 11(33): 30228-30233, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31357861

ABSTRACT

Zeolitic imidazolate framework (ZIF-8)-derived ZnO/nanoporous carbon (NPC) aligned in a three-dimensional porous carbon network (3DPCN) is designed to form a multiporous network nanostructure to absorb electromagnetic waves. The porous 3DPCN structure acts as the electronic pathway and the nucleation locus for ZIF-8 particles. Meanwhile, the conductive networks could also provide more routes for electron transfer. With good impedance matching and attenuation characteristics, ZnO@NPC/3DPCN shows enhanced microwave response where the minimum reflection loss of -35.7 dB can be achieved with a 10 wt % filler. Our study not only exploits the new system of lightweight absorbers but also further reveals the changing of electromagnetic parameters and absorbing properties by heat treatment, which may lead to a new way to design novel lighter multiporous network nanostructures.

10.
J Colloid Interface Sci ; 539: 168-174, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30580172

ABSTRACT

Sodium super-ionic conductor (NASICON) structured Na3V2(PO4)3 (NVP), a promising cathode material for sodium-ion batteries (SIBs), benefits by its unique three-dimensional (3D) channel structure. However, the inherent characteristics of NVP (such as low electrical conductivity) usually lead to inferior rate and long-cycling performance, which miss the requirements of practical application in electrical energy storage systems (ESSs). Herein, we propose the synthesis of porous high-crystalline Na3V2(PO4)3/C nanoplates (NVP/C-P) via hydrothermal method and post-calcination. The porous nanoplate structure provides increased specific surface area and shortened diffusion pathway for ion/electron transport. Consequently, NVP/C-P cathodes exhibit a high specific capacity (117 mAh g-1, 0.2 C), exceptional rate performance (76.5 mAh g-1, 100 C) and long cyclic stability (10,000 cycles).

11.
Chemistry ; 24(15): 3873-3881, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29319903

ABSTRACT

Tin disulfide, as a promising high-capacity anode material for sodium-ion batteries, exhibits high theoretical capacity but poor practical electrochemical properties due to its low electrical conductivity. Constructing heterostructures has been considered to be an effective approach to enhance charge transfer and ion-diffusion kinetics. In this work, composites of SnS2 /Sb2 S3 heterostructures with reduced graphene oxide nanosheets were synthesized by a facile one-pot hydrothermal method. When applied as anode material in sodium-ion batteries, the composite showed a high reversible capacity of 642 mA h g-1 at a current density of 0.2 A g-1 and good cyclic stability without capacity loss in 100 cycles. In particular, SnS2 /Sb2 S3 heterostructures exhibited outstanding rate performance with capacities of 593 and 567 mA h g-1 at high current densities of 2 and 4 A g-1 , respectively, which could be ascribed to the dramatically improved Na+ diffusion kinetics and electrical conductivity.

12.
Chem Asian J ; 13(3): 342-349, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29281173

ABSTRACT

Prussian blue and its analogues (PBAs) have been recognized as one of the most promising cathode materials for room-temperature sodium-ion batteries (SIBs). Herein, we report high crystalline and Na-rich Prussian white Na2 CoFe(CN)6 nanocubes synthesized by an optimized and facile co-precipitation method. The influence of crystallinity and sodium content on the electrochemical properties was systematically investigated. The optimized Na2 CoFe(CN)6 nanocubes exhibited an initial capacity of 151 mA h g-1 , which is close to its theoretical capacity (170 mA h g-1 ). Meanwhile, the Na2 CoFe(CN)6 cathode demonstrated an outstanding long-term cycle performance, retaining 78 % of its initial capacity after 500 cycles. Furthermore, the Na2 CoFe(CN)6 Prussian white nanocubes also achieved a superior rate capability (115 mA h g-1 at 400 mA g-1 , 92 mA h g-1 at 800 mA g-1 ). The enhanced performances could be attributed to the robust crystal structure and rapid transport of Na ions through large channels in the open-framework. Most noteworthy, the as-prepared Na2 CoFe(CN)6 nanocubes are not only low-cost in raw materials but also contain a rich sodium content (1.87 Na ions per lattice unit cell), which will be favorable for full cell fabrication and large-scale electric storage applications.

13.
Org Lett ; 18(19): 4962-4965, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27682310

ABSTRACT

Sodium iodide is used for the first time as a nucleophile to trap an α-imino rhodium carbene, which triggers a tandem process involving intermolecular nucleophilic attack and intramolecular SN2 reaction. A series of 5-iodo-1,2,3,4-tetrahydropyridines are obtained in high yield, and the synthetic utility of the products is demonstrated in cross-coupling reactions and the construction of biorelated polycyclic compounds.

14.
Angew Chem Int Ed Engl ; 55(14): 4557-61, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26933933

ABSTRACT

Highly functionalized 4-bromo-1,2-dihydroisoquinolines were synthesized from readily available 4-(2-(bromomethyl)phenyl)-1-sulfonyl-1,2,3-triazoles. A bromonium ylide is proposed as the key intermediate, which can be formed by the intramolecular nucleophilic attack of the benzyl bromide on the α-imino rhodium carbene formed in the presence of the rhodium catalyst.

15.
J Org Chem ; 80(9): 4816-23, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25855588

ABSTRACT

In the presence of a Rh(II) catalyst and ß-(methylthio)-α,ß-unsaturated ketones, 1-sulfonyl-1,2,3-triazoles can be converted into functionalized ß-amino-α,ß-unsaturated ketones via formation of α-imino rhodium carbene/sulfur ylide and subsequent rearrangement. The products decompose to useful 2-methylthiopyrrole derivatives conveniently in high yield.

SELECTION OF CITATIONS
SEARCH DETAIL
...