Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Exp Biol Med (Maywood) ; 249: 10117, 2024.
Article in English | MEDLINE | ID: mdl-38590360

ABSTRACT

The risk factors and causes of intracerebral hemorrhage (ICH) and the degree of functional recovery after ICH are distinct between young and elderly patients. The increasing incidence of ICH in young adults has become a concern; however, research on the molecules and pathways involved ICH in subjects of different ages is lacking. In this study, tandem mass tag (TMT)-based proteomics was utilized to examine the protein expression profiles of perihematomal tissue from young and aged mice 24 h after collagenase-induced ICH. Among the 5,129 quantified proteins, ICH induced 108 and 143 differentially expressed proteins (DEPs) in young and aged mice, respectively; specifically, there were 54 common DEPs, 54 unique DEPs in young mice and 89 unique DEPs in aged mice. In contrast, aging altered the expression of 58 proteins in the brain, resulting in 39 upregulated DEPs and 19 downregulated DEPs. Bioinformatics analysis indicated that ICH activated different proteins in complement pathways, coagulation cascades, the acute phase response, and the iron homeostasis signaling pathway in mice of both age groups. Protein-protein interaction (PPI) analysis and ingenuity pathway analysis (IPA) demonstrated that the unique DEPs in the young and aged mice were related to lipid metabolism and carbohydrate metabolism, respectively. Deeper paired-comparison analysis demonstrated that apolipoprotein M exhibited the most significant change in expression as a result of both aging and ICH. These results help illustrate age-related protein expression changes in the acute phase of ICH.


Subject(s)
Cerebral Hemorrhage , Proteomics , Aged , Humans , Mice , Animals , Proteomics/methods , Cerebral Hemorrhage/metabolism , Brain/metabolism , Aging , Proteins/metabolism
4.
Exp Neurol ; 368: 114507, 2023 10.
Article in English | MEDLINE | ID: mdl-37598880

ABSTRACT

Despite decades of intensive research, there are still very limited options for the effective treatment of intracerebral hemorrhage (ICH). Recently, mounting evidence has indicated that the ultra-early stage (<3 h), serving as the primary phase of ICH, plays a pivotal role and may even surpass other stages in terms of its significance. Therefore, uncovering the metabolic alterations induced by ICH in the ultra-early stage is of crucial importance. To investigate this, the collagenase ICH mouse model was employed in this study. ICH or sham-operated mice were euthanized at the ultra-early stage of 3 h and the acute stage of 24 h and 72 h after the operation. Then, the metabolic changes in the perihematomal tissues were detected by liquid chromatography coupled with tandem mass spectrometry. In total, alterations in the levels of 465 metabolites were detected. A total of 136 metabolites were significantly changed at 3 h. At 24 h and 72 h, the amounts were 132 and 126, respectively. Additionally, the key corresponding metabolic pathways for these time points were analyzed through KEGG. To gather additional information, quantitative real-time transcription polymerase chain reaction, enzyme-linked immunosorbent assay and Western blots were performed to validate the metabolic changes. Overall, ICH significantly alters important physiological functions such as cysteine metabolism, purine metabolism, synaptic alterations, the synaptic vesicle cycle, and the ATP-binding cassette transporter system. These might be the key pathologic mechanisms of the ultra-early stage induced by ICH.


Subject(s)
ATP-Binding Cassette Transporters , Metabolomics , Animals , Mice , Cerebral Hemorrhage , Chromatography, Liquid , Disease Models, Animal
5.
Transl Stroke Res ; 14(6): 955-969, 2023 12.
Article in English | MEDLINE | ID: mdl-36324028

ABSTRACT

Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is characterized by rapid development of neuron apoptosis and dysregulated inflammatory response. Microglia efferocytosis plays a critical role in the clearance of apoptotic cells, attenuation of inflammation, and minimizing brain injury in various pathological conditions. Here, using a mouse SAH model, we aim to investigate whether microglia efferocytosis is involved in post-SAH inflammation and to determine the underlying signaling pathway. We hypothesized that TAM receptors and their ligands regulate this process. To prove our hypothesis, the expression and cellular location of TAM (Tyro3, Axl, and Mertk) receptors and their ligands growth arrest-specific 6 (Gas6) and Protein S (ProS1) were examined by PCR, western blots, and fluorescence immunostaining. Thirty minutes after SAH, mice received an intraventricular injection of recombinant Gas6 (rGas6) or recombinant ProS1 (rPros1) and underwent evaluations of inflammatory mediator expression, neurological deficits, and blood-brain barrier integrity at 24 h. Microglia efferocytosis of apoptotic neurons was analyzed in vivo and in vitro. The potential mechanism was determined by inhibiting or knocking down TAM receptors and Rac1 by specific inhibitors or siRNA. SAH induced upregulation of Axl and its ligand Gas6. The administration of rGas6 but not rPros1 promoted microglia efferocytosis, alleviated inflammation, and ameliorated SAH-induced BBB breakdown and neurological deficits. The beneficial effects of rGas6 were arrogated by inhibiting or knocking down Axl and Rac1. We concluded that rGas6 attenuated the development of early brain injury in mice after SAH by facilitating microglia efferocytosis and preventing inflammatory response, which is partly dependent on activation of Axl and Rac1.


Subject(s)
Brain Injuries , Subarachnoid Hemorrhage , Animals , Microglia/pathology , Subarachnoid Hemorrhage/pathology , Signal Transduction , Inflammation/metabolism , Disease Models, Animal
6.
Front Mol Neurosci ; 15: 908683, 2022.
Article in English | MEDLINE | ID: mdl-35677585

ABSTRACT

Age is a well-known risk factor that is independently associated with poor outcomes after intracerebral hemorrhage (ICH). However, the interrelationship between age and poor outcomes after ICH is not well defined. In this study, we aimed to investigate this relationship based on collagenase-induced ICH mice models. After being assessed neurological deficit 24 h after ICH, mice were euthanized and brain perihematomal tissues were used for RNA-sequencing (RNA-seq). And then the functions of differentially expressed genes (DEGs) identified by RNA-seq were analyzed using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Ingenuity Pathway Analysis (IPA) and protein-protein interaction (PPI) analysis. In addition, we performed real-time quantitative polymerase chain reaction (RT-qPCR) for validation of candidate DEGs. In the behavioral tests, aged mice presented significantly worse neurological function than young mice and greater weight loss than aged sham controls 24 h after ICH. In DEGs analysis, ICH affected the expression of more genes in young mice (2,337 DEGs) compared with aged mice (2,005 DEGs). We found aged mice exhibited increased brain inflammatory responses compared with young animals and ICH induced significant activation of the interferon-ß (IFN-ß) and IFN signaling pathways exclusively in aged mice. Moreover, further analysis demonstrated that ICH resulted in the activation of cytosolic DNA-sensing pathway with the production of downstream molecule type I IFN, and the response to type I IFN was more significant in aged mice than in young mice. In agreement with the results of RNA-seq, RT-qPCR indicated that the expression of candidate genes of cyclic GMP-AMP synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), and IFN-ß was significantly altered in aged mice after ICH. Taken together, our study indicated that compared to young animals, aged mice exhibit increased vulnerability to ICH and that the differences in transcriptional response patterns to ICH between young and aged mice. We believe that these findings will facilitate our understanding of ICH pathology and help to translate the results of preclinical studies into a clinical setting.

7.
Front Aging Neurosci ; 14: 785761, 2022.
Article in English | MEDLINE | ID: mdl-35309888

ABSTRACT

Mitochondrial dysfunction has been regarded as one of the major contributors of ischemic neuronal death after stroke. Recently, intercellular mitochondrial transfer between different cell types has been widely studied and suggested as a potential therapeutic approach. However, whether mitochondria are involved in the neuron-glia cross-talk following ischemic stroke and the underlying mechanisms have not been explored yet. In this study, we demonstrated that under physiological condition, neurons release few mitochondria into the extracellular space, and the mitochondrial release increased when subjected to the challenges of acidosis, hydrogen peroxide (H2O2), N-methyl-D-aspartate (NMDA), or glutamate. Acidosis reduced the mitochondrial basal respiration and lowered the membrane potential in primary-cultured mouse cortical neurons. These defective mitochondria were prone to be expelled to the extracellular space by the injured neurons, and were engulfed by adjacent astrocytes, leading to increased astrocytic expressions of mitochondrial Rho GTPase 1 (Miro 1) and mitochondrial transcription factor A (TFAM) at mRNA level. In mice subjected to transient focal cerebral ischemia, the number of defective mitochondria in the cerebrospinal fluid increased. Our results suggested that the neuron-derived mitochondria may serve as a "help-me" signaling and mediate the neuron-astrocyte cross-talk following ischemic stroke. Promoting the intercellular mitochondrial transfer by accelerating the neuronal releasing or astrocytic engulfing might be a potential and attractive therapeutic strategy for the treatment of ischemic stroke in the future.

8.
J Stroke Cerebrovasc Dis ; 31(3): 106281, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35026495

ABSTRACT

OBJECTIVE: Hyperglycemia is often observed in the patients after acute stroke. This study aims to elucidate the potential effect and mechanism of hyperglycemia by screening microRNAs expression in intracerebral hemorrhage mice. METHODS: We employed the collagenase model of intracerebral hemorrhage. Twenty male C57BL/6 mice were used and randomly divided in normo- and hyperglycemic. The hyperglycemia was induced by intraperitoneally injection of 50% of Dextrose (8 mL/kg) 3 hours after intracerebral hemorrhage. The neurologic impairment was investigated by neurologic deficit scale. To study the specific mechanisms of hyperglycemia, microRNAs expression in perihematomal area was investigated by RNA sequencing. MicroRNAs expression in hyperglycemic intracerebral hemorrhage animals were compared normoglycemic mice. Functional annotation analysis was used to indicate potential pathological pathway, underlying observed effects. Finally, polymerase chain reaction validation was administered. RESULTS: Intraperitoneal injection of dextrose significantly increased blood glucose level. That was associated with aggravation of neurological deficits in hyperglycemic compared to normoglycemic animals. A total of 73 differentially expressed microRNAs were identified via transcriptomics analysis. Bioinformatics analyses showed that these microRNAs were significantly altered in several signaling pathways, of which the hedgehog signaling pathway was regarded as the most potential pathway associated with the effect of hyperglycemia on acute intracerebral hemorrhage. Furthermore, polymerase chain reaction results validated the correlation between microRNAs and hedgehog signaling pathway. CONCLUSIONS: MicroRNA elevated in hyperglycemia group may be involved in worsening the neurological function via inhibiting the hedgehog signaling, which provides a novel molecular physiological mechanism and lays the foundation for treatment of intracerebral hemorrhage.


Subject(s)
Hedgehog Proteins , MicroRNAs , Signal Transduction , Transcriptome , Animals , Cerebral Hemorrhage/genetics , Disease Models, Animal , Glucose/toxicity , Hedgehog Proteins/metabolism , Hyperglycemia/chemically induced , Male , Mice , Mice, Inbred C57BL , Transcriptome/genetics
9.
Neural Regen Res ; 17(8): 1769-1775, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35017437

ABSTRACT

Neuroinflammation is a major pathophysiological factor that results in the development of brain injury after cerebral ischemia/reperfusion. Downregulation of microRNA (miR)-455-5p after ischemic stroke has been considered a potential biomarker and therapeutic target for neuronal injury after ischemia. However, the role of miR-455-5p in the post-ischemia/reperfusion inflammatory response and the underlying mechanism have not been evaluated. In this study, mouse models of cerebral ischemia/reperfusion injury were established by transient occlusion of the middle cerebral artery for 1 hour followed by reperfusion. Agomir-455-5p, antagomir-455-5p, and their negative controls were injected intracerebroventricularly 2 hours before or 0 and 1 hour after middle cerebral artery occlusion (MCAO). The results showed that cerebral ischemia/reperfusion decreased miR-455-5p expression in the brain tissue and the peripheral blood. Agomir-455-5p pretreatment increased miR-455-5p expression in the brain tissue, reduced the cerebral infarct volume, and improved neurological function. Furthermore, primary cultured microglia were exposed to oxygen-glucose deprivation for 3 hours followed by 21 hours of reoxygenation to mimic cerebral ischemia/reperfusion. miR-455-5p reduced C-C chemokine receptor type 5 mRNA and protein levels, inhibited microglia activation, and reduced the production of the inflammatory factors tumor necrosis factor-α and interleukin-1ß. These results suggest that miR-455-5p is a potential biomarker and therapeutic target for the treatment of cerebral ischemia/reperfusion injury and that it alleviates cerebral ischemia/reperfusion injury by inhibiting C-C chemokine receptor type 5 expression and reducing the neuroinflammatory response.

10.
Stroke ; 52(12): 4043-4053, 2021 12.
Article in English | MEDLINE | ID: mdl-34807744

ABSTRACT

BACKGROUND AND PURPOSE: Sirt5 (Sirtuin 5) desuccinylates multiple metabolic enzymes and plays an important role in maintaining energy homeostasis. The goal of this study was to determine whether Sirt5-mediated desuccinylation restores the energy metabolism and protects brain against subarachnoid hemorrhage (SAH). METHODS: Male C57BL/6 or Sirt5-/- mice were used. The endovascular perforation SAH model was applied. Protein lysine succinylation in the brain cortex was examined using liquid chromatography-tandem mass spectrometry analysis. The brain metabolism was evaluated by measurement of brain pH as well as ATP and reactive oxygen species level. Neuronal cell death and neurobehavioral deficits were assessed 24 hours after SAH. The expression and desuccinylation activity of Sirt5, lysine succinylation of citrate synthase and ATP synthase subunits were investigated by Western blot, immunohistochemistry, and ELISA in SAH mice and patients. Furthermore, the benefits of resveratrol-mediated Sirt5 activation were investigated. RESULTS: A total of 211 lysine succinylation sites were differentially expressed on 170 proteins in mice brain after SAH. Thirty-nine percent of these succinylated proteins were localized in mitochondria and they are related to energy metabolism. SAH caused a decrease of Sirt5 expression and succinylated citrate synthase as well as the subunits of ATP synthase, subsequently lowered brain pH, reduced ATP and increased reactive oxygen species production, leading to neuronal cell death, and neurological deficits. Knockdown of Sirt5 aggravated SAH-induced effects, mentioned above. Administration of resveratrol resulted in activation of Sirt5. The activation was accompanied both with restoration of the mitochondrial metabolism and alleviation of early brain injury as well as with desuccinylating citrate synthase and ATP synthase. CONCLUSIONS: Protein lysine succinylation is a biochemical hallmark of metabolic crisis after SAH, and disruption of lysine succinylation through activation of Sirt5 might be a promising therapeutic strategy for the treatment of SAH.


Subject(s)
Energy Metabolism/physiology , Lysine/metabolism , Mitochondria/metabolism , Sirtuins/metabolism , Subarachnoid Hemorrhage/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Subarachnoid Hemorrhage/pathology
11.
Front Neurol ; 12: 697779, 2021.
Article in English | MEDLINE | ID: mdl-34630278

ABSTRACT

In acute stroke management, time window has been rigidly used as a guide for decades and the reperfusion treatment is only available in the first few limited hours. Recently, imaging-based selection of patients has successfully expanded the treatment window out to 16 and even 24 h in the DEFUSE 3 and DAWN trials, respectively. Recent guidelines recommend the use of imaging techniques to guide therapeutic decision-making and expanded eligibility in acute ischemic stroke. A tissue window is proposed to replace the time window and serve as the surrogate marker for potentially salvageable tissue. This article reviews the evolution of time window, addresses the advantage of a tissue window in precision medicine for ischemic stroke, and discusses both the established and emerging techniques of neuroimaging and their roles in defining a tissue window. We also emphasize the metabolic imaging and molecular imaging of brain pathophysiology, and highlight its potential in patient selection and treatment response prediction in ischemic stroke.

12.
Oxid Med Cell Longev ; 2021: 2510847, 2021.
Article in English | MEDLINE | ID: mdl-36226158

ABSTRACT

Existing treatments for intracerebral hemorrhage (ICH) are unable to satisfactorily prevent development of secondary brain injury after ICH and multiple pathological mechanisms are involved in the development of the injury. In this study, we aimed to identify novel genes and proteins and integrated their molecular alternations to reveal key network modules involved in ICH pathology. A total of 30 C57BL/6 male mice were used for this study. The collagenase model of ICH was employed, 3 days after ICH animals were tested neurological. After it, animals were euthanized and perihematomal brain tissues were collected for transcriptome and TMT labeling-based quantitative proteome analyses. Protein-protein interaction (PPI) network, Gene Set Enrichment Analysis (GSEA), and regularized Canonical Correlation Analysis (rCCA) were performed to integrated multiomics data. For validation of hub genes and proteins, qRT-PCR and Western blot were carried out. The candidate biomarkers were further measured by ELISA in the plasma of ICH patients and the controls. A total of 2218 differentially expressed genes (DEGs) and 353 differentially expressed proteins (DEPs) between the ICH model group and control group were identified. GSEA revealed that immune-related gene sets were prominently upregulated and significantly enriched in pathways of inflammasome complex, negative regulation of interleukin-12 production, and pyroptosis during the ICH process. The rCCA network presented two highly connective clusters which were involved in the sphingolipid catabolic process and inflammatory response. Among ten hub genes screened out by integrative analysis, significantly upregulated Itgb2, Serpina3n, and Ctss were validated in the ICH group by qRT-PCR and Western blot. Plasma levels of human SERPINA3 (homologue of murine Serpina3n) were elevated in ICH patients compared with the healthy controls (SERPINA3: 13.3 ng/mL vs. 11.2 ng/mL, p = 0.015). Within the ICH group, higher plasma SERPINA3 levels with a predictive threshold of 14.31 ng/mL (sensitivity = 64.3%; specificity = 80.8%; AUC = 0.742, 95% CI: 0.567-0.916) were highly associated with poor outcome (mRS scores 4-6). Taken together, the results of our study exhibited molecular changes related to ICH-induced brain injury by multidimensional analysis and effectively identified three biomarker candidates in a mouse ICH model, as well as pointed out that Serpina3n/SERPINA3 was a potential biomarker associated with poor functional outcome in ICH patients.


Subject(s)
Brain Injuries , Proteome , Animals , Biomarkers , Brain Injuries/complications , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/genetics , Collagenases , Humans , Inflammasomes/adverse effects , Interleukin-12 , Male , Mice , Mice, Inbred C57BL , Prognosis , Sphingolipids
14.
Curr Neuropharmacol ; 18(12): 1213-1226, 2020.
Article in English | MEDLINE | ID: mdl-32928089

ABSTRACT

Ischemic stroke is one of the main causes of mortality and disability worldwide. However, efficient therapeutic strategies are still lacking. Stem/progenitor cell-based therapy, with its vigorous advantages, has emerged as a promising tool for the treatment of ischemic stroke. The mechanisms involve new neural cells and neuronal circuitry formation, antioxidation, inflammation alleviation, angiogenesis, and neurogenesis promotion. In the past decades, in-depth studies have suggested that cell therapy could promote vascular stabilization and decrease blood-brain barrier (BBB) leakage after ischemic stroke. However, the effects and underlying mechanisms on BBB integrity induced by the engrafted cells in ischemic stroke have not been reviewed yet. Herein, we will update the progress in research on the effects of cell therapy on BBB integrity after ischemic stroke and review the underlying mechanisms. First, we will present an overview of BBB dysfunction under the ischemic condition and cells engraftment for ischemic treatment. Then, we will summarize and discuss the current knowledge about the effects and underlying mechanisms of cell therapy on BBB integrity after ischemic stroke. In particular, we will review the most recent studies in regard to the relationship between cell therapy and BBB in tissue plasminogen activator (t-PA)-mediated therapy and diabetic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Blood-Brain Barrier , Brain Ischemia/therapy , Cell- and Tissue-Based Therapy , Humans , Stroke/therapy , Tissue Plasminogen Activator
15.
Med Gas Res ; 9(3): 127-132, 2019.
Article in English | MEDLINE | ID: mdl-31552875

ABSTRACT

Microglia participate in bi-directional control of brain repair after stroke. Previous studies have demonstrated that hydrogen protects brain after ischemia/reperfusion (I/R) by inhibiting inflammation, but the specific mechanism of anti-inflammatory effect of hydrogen is poorly understood. The goal of our study is to investigate whether inhalation of high concentration hydrogen (HCH) is able to attenuate I/R-induced microglia activation. Eighty C57B/L male mice were divided into four groups: sham, I/R, I/R + HCH and I/R + N2/O2 groups. Assessment of animals happened in "blind" matter. I/R was induced by occlusion of middle cerebral artery for one hour). After one hour, filament was withdrawn, which induced reperfusion. Hydrogen treated I/R animals inhaled mix of 66.7% H2 balanced with O2 for 90 minutes, starting immediately after initiation of reperfusion. Control animals (N2/O2) inhaled mix in which hydrogen was replaced with N2 for the same time (90 minutes). The brain injury, such as brain infarction and development of brain edema, as well as neurobehavioral deficits were determined 23 hours after reperfusion. Effect of HCH on microglia activation in the ischemic penumbra was investigated by immunostaining also 23 hours after reperfusion. mRNA expression of inflammation related genes was detected by PCR. Our results showed that HCH attenuated brain injury and consequently reduced neurological dysfunction after I/R. Furthermore, we demonstrated that HCH directed microglia polarization towards anti-inflammatory M2 polarization. This study indicates hydrogen may exert neuroprotective effects by inhibiting the microglial activation and regulating microglial polarization. This study was conducted in agreement with the Animal Care and Use Committee (IACUC) and Institutional Animal Care guidelines regulation (Shanghai Jiao Tong University, China (approval No. A2015-011) in November 2015.


Subject(s)
Hydrogen/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Microglia/drug effects , Microglia/pathology , Phenotype , Animals , Brain/drug effects , Brain/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , Hydrogen/therapeutic use , Male , Mice , Mice, Inbred C57BL , Reperfusion Injury/drug therapy
16.
Stroke ; 50(11): 3246-3254, 2019 11.
Article in English | MEDLINE | ID: mdl-31558140

ABSTRACT

Background and Purpose- Perihemorrhagic edema (PHE) is associated with poor outcome after intracerebral hemorrhage (ICH). Infiltration of immune cells is considered a major contributor of PHE. Recent studies suggest that immunomodulation via S1PR (sphingosine-1-phosphate receptor) modulators improve outcome in ICH. Siponimod, a selective modulator of sphingosine 1-phosphate receptors type 1 and type 5, demonstrated an excellent safety profile in a large study of patients with multiple sclerosis. Here, we investigated the impact of siponimod treatment on perihemorrhagic edema, neurological deficits, and survival in a mouse model of ICH. Methods- ICH was induced by intracranial injection of 0.075 U of bacterial collagenase in 123 mice. Mice were randomly assigned to different treatment groups: vehicle, siponimod given as a single dosage 30 minutes after the operation or given 3× for 3 consecutive days starting 30 minutes after operation. The primary outcome of our study was evolution of PHE measured by magnetic resonance-imaging on T2-maps 72 hours after ICH, secondary outcomes included evolution of PHE 24 hours after ICH, survival and neurological deficits, as well as effects on circulating blood cells and body weight. Results- Siponimod significantly reduced PHE measured by magnetic resonance imaging (P=0.021) as well as wet-dry method (P=0.04) 72 hours after ICH. Evaluation of PHE 24 hours after ICH showed a tendency toward attenuated brain edema in the low-dosage group (P=0.08). Multiple treatments with siponimod significantly improved neurological deficits measured by Garcia Score (P=0.03). Survival at day 10 was improved in mice treated with multiple dosages of siponimod (P=0.037). Mice treated with siponimod showed a reduced weight loss after ICH (P=0.036). Conclusions- Siponimod (BAF-312) attenuated PHE after ICH, increased survival, and reduced ICH-induced sensorimotor deficits in our experimental ICH-model. Findings encourage further investigation of inflammatory modulators as well as the translation of BAF-312 to a human study of ICH patients.


Subject(s)
Azetidines/pharmacology , Benzyl Compounds/pharmacology , Brain Edema , Cerebral Hemorrhage , Signal Transduction/drug effects , Animals , Brain Edema/drug therapy , Brain Edema/etiology , Brain Edema/metabolism , Brain Edema/physiopathology , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/physiopathology , Disease Models, Animal , Male , Mice , Sphingosine-1-Phosphate Receptors/metabolism
17.
Exp Neurol ; 316: 12-19, 2019 06.
Article in English | MEDLINE | ID: mdl-30930097

ABSTRACT

MicroRNAs (miRNAs) have been widely reported to induce posttranscriptional gene silencing and led to an explosion of new strategies for the treatment of human disease. It has been reported that the expression of MicroRNA-132 (miR-132) are altered both in the blood and brain after stroke. However, the effect of miR-132 on blood-brain barrier (BBB) disruption in ischemia stroke has not been studied. Here we will investigate the effects of miR-132 on the permeability of BBB after ischemic stroke and explore the potential mechanism underlying observed protection. Eight week-old mice were injected intracerebroventricularly with miR-132, antagomir-132 or agomir negative control (agomir-NC) 2 h before middle cerebral artery occlusion (MCAO), followed by animal behavior tests and infraction volume measurement at 24 h after MCAO. BBB permeability and integrity were measured by Evan's blue extravasation and brain water content. The expression of tight junction proteins was detected by immnostaining and Western blots. The level of MiR-132 and its targeted gene Mmp9 were assayed. Treatment with exogenous MiR-132 (agomir-132) decreased the infraction volume, reduced brain edema, and improved neurological functions compared to control mice. Agomir-132 increased the level of MiR-132 in brain tissue, suppressed the expression of MMP-9 mRNA and decreased the degradation of tight junction proteins VE-cadherin and ß-Catenin in ischemic stroke mice. Inhibition of MMP-9 has a similar protective effect to agomir-132 on infraction volume, brain edema, and tight-junction protein expression after MCAO. Our results indicated that miR-132/MMP-9 axis might be a novel therapeutic target for BBB protection in ischemic stroke.


Subject(s)
Arterial Occlusive Diseases/drug therapy , Blood-Brain Barrier/pathology , MicroRNAs/therapeutic use , Middle Cerebral Artery , Animals , Arterial Occlusive Diseases/pathology , Arterial Occlusive Diseases/psychology , Brain Edema/pathology , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Brain Ischemia/psychology , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/psychology , Injections, Intraventricular , Male , Matrix Metalloproteinase 9/biosynthesis , Matrix Metalloproteinase 9/genetics , Mice , Mice, Inbred C57BL , MicroRNAs/administration & dosage , Psychomotor Performance , Stroke/drug therapy , Stroke/pathology , Stroke/psychology , Tight Junction Proteins/metabolism
18.
J Appl Physiol (1985) ; 126(4): 934-940, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30653414

ABSTRACT

Decompression sickness (DCS) occurs because of an excessively rapid and extensive reduction of the ambient pressure. Bubble-induced spinal cord ischemia is generally considered as a part of neurological DCS pathogenesis. Because helium preconditioning (HPC) recently demonstrated beneficial properties against ischemic damage, we hypothesized that HPC may decrease the neurological deficits of DCS in rats. Seventy-five male Sprague-Dawley rats were divided into a non-HPC group ( n = 25) and a HPC group ( n = 25) and 25 naive animals that were euthanized for histological examination ( n = 5) or anesthetized for baseline somatosensory evoked potential (SSEP) recordings ( n = 20). To induce DCS, rats were compressed with air to a pressure of 709 kPa for 60 min and decompressed at a rate of 203 kPa/min. HPC was administered as three episodes of 79% helium-21% oxygen mixture inhalation for 5 min interspersed with 5 min of air breathing. We found that HPC resulted in significantly decreased DCS incidence and delay of DCS onset. HPC also improved animal performance on the grip test after decompression and significantly ameliorated decompression-induced decrease of platelet number. Furthermore, the incidence of abnormal SSEP waves and histological spinal lesions was significantly reduced by HPC. We conclude that HPC can decrease the occurrence of DCS and ameliorate decompression-induced neurological deficits. NEW & NOTEWORTHY Helium preconditioning ameliorates decompression-induced neurological deficits in rats. Helium breathing before air dives may prevent neurological deficit and attenuate symptoms after decompression.


Subject(s)
Decompression Sickness/drug therapy , Helium/pharmacology , Nervous System Diseases/drug therapy , Administration, Inhalation , Animals , Decompression/adverse effects , Decompression Sickness/metabolism , Evoked Potentials, Somatosensory/physiology , Male , Nervous System Diseases/metabolism , Nitrogen/metabolism , Oxygen/metabolism , Rats , Rats, Sprague-Dawley , Respiration
19.
Cell Transplant ; 28(6): 662-670, 2019 06.
Article in English | MEDLINE | ID: mdl-30520322

ABSTRACT

Stroke is the result of blockage or rupture of blood vessels in the brain and is the leading cause of death and disability in the world. Currently only a very limited number of therapeutic approaches are available for treatment of stroke patients, and the vast majority of neuroprotective agents that tested positively in pre-clinical studies failed in clinical trials. In recent years, the clinical value of the use of exosomes for stroke treatment has received widespread attention due their unique characteristics such as low immunogenicity, low toxicity and biodegradability, ability to cross the blood-brain barrier (BBB), and their important role in communication between cells. More and more evidence suggests that the secretion of exosomes is the mechanism underlying the protection induced by mesenchymal stromal cells (MSCs) after stroke. Exosomes are thought to support brain restoration and induce repairing effects, including neurovascular remodeling, and anti-apoptosis and anti-inflammatory effects. Recent reports have focused on the clinical application of exosomes as a potential drug delivery approach. This review focuses on the ability of exosomes to interrupt the stroke-induced pathologic processes of stroke, and on publications describing how to achieve more effective treatment of stroke with exosomes.


Subject(s)
Exosomes/transplantation , Mesenchymal Stem Cell Transplantation , Stroke/therapy , Animals , Cell Communication , Exosomes/metabolism , Exosomes/pathology , Humans , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Stroke/metabolism , Stroke/pathology
20.
Exp Neurol ; 312: 72-81, 2019 02.
Article in English | MEDLINE | ID: mdl-30503192

ABSTRACT

Disruption of the blood-brain barrier results in the formation of edema and contributes to the loss of neurological function following intracerebral hemorrhage (ICH). This study examined insulin-like growth factor-1 (IGF-1) as a treatment and its mechanism of action for protecting the blood-brain barrier after ICH in mice. 171 Male CD-1 mice were subjected to ICH via collagenase or autologous blood. A dose study for recombinant human IGF-1 (rhIGF-1) was performed. Brain water content and behavioral deficits were evaluated at 24 and 72 h after the surgery, and Evans blue extravasation and hemoglobin assay were conducted at 24 h. Western blotting was performed for the mechanism study and interventions were used targeting the IGF-1R/GSK3ß/MEKK1 pathway. rhIGF-1 reduced edema and blood-brain barrier permeability, and improved neurobehavior outcomes. Western blots showed that rhIGF-1 reduced p-GSK3ß and MEKK1 expression, thereby increasing occludin and claudin-5 expression. Inhibition and knockdown of IGF-1R reversed the therapeutic benefits of rhIGF-1. The findings within suggest that stimulation of the IGF-1R is a therapeutic target for ICH which may lead to improved neurofunctional and blood-brain barrier protection.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability/physiology , Cerebral Hemorrhage/metabolism , Insulin-Like Growth Factor I/administration & dosage , Animals , Blood-Brain Barrier/drug effects , Capillary Permeability/drug effects , Cerebral Hemorrhage/drug therapy , Injections, Intraventricular , Male , Mice , RNA, Small Interfering/administration & dosage , Receptor, IGF Type 1/agonists , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...