Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Molecules ; 27(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807381

ABSTRACT

BACKGROUND: Morinda elliptica (family Rubiaceae), locally known as 'mengkudu kecil', has been used by the Malays for medicinal purposes. Anthraquinones isolated from the roots of Morinda elliptica, namely nordamnacanthal and damnacanthal, have been widely reported to exhibit anticancer and antioxidant properties in various cancer models in vitro and in vivo. AIM: This study analyzed the morphological and ultrastructural effects of damnacanthal and nordamnacanthal on T-lymphoblastic leukemia CEM-SS cells. METHOD: Light microscopy, Giemsa staining, Wright's staining, scanning electron microscopy, and transmission electron microscopy were carried out to determine apoptosis, necrosis, and ultrastructural changes that occurred within the cells. RESULTS: The outcomes showed that these compounds induced cell death by apoptosis and necrosis, specifically at higher doses of 10 and 30 µg/mL. Condensation and fragmentation of the nuclear chromatin, which further separated into small, membrane-bound vesicles known as apoptotic bodies, were observed in the nuclei and cytoplasm. The plasma membranes and cytoskeletons also showed marked morphological changes upon treatment with damnacanthal and nordamnacanthal, indicating apoptosis. CONCLUSION: Therefore, we report that damnacanthal and nordamnacanthal exhibit anticancer properties by inducing apoptosis and necrosis in CEM-SS cells, and they have potential as a drug for the treatment of T-lymphoblastic leukemia.


Subject(s)
Leukemia, T-Cell , Morinda , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Aldehydes , Anthraquinones/chemistry , Apoptosis , Humans , Leukemia, T-Cell/drug therapy , Morinda/chemistry , Necrosis/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
2.
Molecules ; 26(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33808969

ABSTRACT

BACKGROUND: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines. METHODS: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out. RESULTS: Nordamnacanthal and damnacanthal at IC50 values of 1.7 µg/mL and10 µg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180-200 bp fragments that are visible as a "ladder" on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle. CONCLUSION: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.


Subject(s)
Aldehydes/pharmacology , Anthraquinones/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Morinda/chemistry , Plants, Medicinal/chemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Aldehydes/isolation & purification , Anthraquinones/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , DNA Fragmentation , Endodeoxyribonucleases/metabolism , Humans , Plant Roots/chemistry , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
3.
Carcinogenesis ; 36 Suppl 1: S254-96, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26106142

ABSTRACT

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.


Subject(s)
Carcinogenesis/chemically induced , Carcinogens, Environmental/adverse effects , Environmental Exposure/adverse effects , Hazardous Substances/adverse effects , Neoplasms/chemically induced , Neoplasms/etiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL