Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cell Metab ; 35(8): 1341-1355.e3, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37433299

ABSTRACT

GDF15 regulates its anorexic effects through the hindbrain area postrema (AP) and nucleus of the solitary tract (NTS) neurons where its receptor, glial-derived neurotrophic factor receptor alpha-like (GFRAL), is expressed. The actions of GDF15 may interact with other appetite regulators elevated in obesity, such as leptin. Here, we report that in mice with high-fat-diet-induced obesity (HFD), the combined infusion of GDF15 and leptin causes significantly greater weight and adiposity loss than either treatment alone, indicating potentiation between GDF15 and leptin. Furthermore, obese, leptin-deficient ob/ob mice are less responsive to GDF15, as are normal mice treated with a competitive leptin antagonist. GDF15 and leptin induce more hindbrain neuronal activation in HFD mice than either treatment alone does. We report extensive connections between GFRAL- and LepR-expressing neurons and find LepR knockdown in the NTS to reduce the GDF15-mediated activation of AP neurons. Overall, these findings suggest that leptin signaling pathways in the hindbrain increase GDF15's metabolic actions.


Subject(s)
Adiposity , Leptin , Animals , Mice , Body Weight , Leptin/pharmacology , Leptin/metabolism , Mice, Obese , Obesity/metabolism , Receptors, Leptin/metabolism , Solitary Nucleus/metabolism
2.
PLoS One ; 15(6): e0233846, 2020.
Article in English | MEDLINE | ID: mdl-32502202

ABSTRACT

Growth Differentiation Factor-15 (GDF15) is a divergent TGF-beta superfamily cytokine that is overexpressed by most cancers and is induced by anticancer therapy. Transgenic and induced animal models suggest that it protects from cancer development but the mechanisms are uncertain. We investigated the role of immunity in GDF15 induced reduction in prostate cancer (PCa) growth. The C57BL/6 transgenic TRAMP prostate cancer prone mice were bred with mice that were immunodeficient and/or systemically overexpressed GDF15. We developed a novel orthotopic TRAMP PCa model in which primary TRAMP tumor cells were implanted into prostates of mice to reduce the study time. These mice were administered recombinant mouse GDF15, antibody to CD8, PD1 or their respective controls. We found that GDF15 induced protection from tumor growth was reversed by lack of adaptive immunity. Flow cytometric evaluation of lymphocytes within these orthotopic tumors showed that GDF15 overexpression was associated with increased CD8 T cell numbers and an increased number and proportion of recently activated CD8+CD11c+ T cells and a reduced proportion of "exhausted" CD8+PD1+ T cells. Further, depletion of CD8 T cells in tumor bearing mice abolished the GDF15 induced protection from tumor growth. Infusion of GDF15 into mice bearing orthotopic TRAMP tumor, substantially reduced tumor growth that was further reduced by concurrent PD1 antibody administration. GDF15 overexpression or recombinant protein protects from TRAMP tumor growth by modulating CD8 T cell mediated antitumor immunity and augments the positive effects of anti-PD1 blockers.


Subject(s)
Antineoplastic Agents/therapeutic use , Growth Differentiation Factor 15/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Adaptive Immunity/drug effects , Animals , Female , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Transplantation , Neoplasms, Experimental
3.
Int J Obes (Lond) ; 43(12): 2370-2380, 2019 12.
Article in English | MEDLINE | ID: mdl-31152154

ABSTRACT

BACKGROUND: Elevated circulating levels of the divergent transforming growth factor-beta (TGFb) family cytokine, growth differentiation factor 15 (GDF15), acting through its CNS receptor, glial-derived neurotrophic factor receptor alpha-like (GFRAL), can cause anorexia and weight loss leading to anorexia/cachexia syndrome of cancer and other diseases. Preclinical studies suggest that administration of drugs based on recombinant GDF15 might be used to treat severe obesity. However, the role of the GDF15-GFRAL pathway in the physiological regulation of body weight and metabolism is unclear. The critical site of action of GFRAL in the CNS has also not been proven beyond doubt. To investigate these two aspects, we have inhibited the actions of GDF15 in mice started on high-fat diet (HFD). METHODS: The actions of GDF15 were inhibited using two methods: (1) Groups of 8 mice under HFD had their endogenous GDF15 neutralised by monoclonal antibody treatment, (2) Groups of 15 mice received AAV-shRNA to knockdown GFRAL at its hypothesised major sites of action, the hindbrain area postrema (AP) and the nucleus of the solitary tract (NTS). Metabolic measurements were determined during both experiments. CONCLUSIONS: Treating mice with monoclonal antibody to GDF15 shortly after commencing HFD results in more rapid gain of body weight, adiposity and hepatic lipid deposition than the control groups. This is accompanied by reduced glucose and insulin tolerance and greater expression of pro-inflammatory cytokines in adipose tissue. Localised AP and NTS shRNA-GFRAL knockdown in mice commencing HFD similarly caused an increase in body weight and adiposity. This effect was in proportion to the effectiveness of GFRAL knockdown, indicated by quantitative analysis of hindbrain GFRAL staining. We conclude that the GDF15-GFRAL axis plays an important role in resistance to obesity in HFD-fed mice and that the major site of action of GDF15 in the CNS is GFRAL-expressing neurons in the AP and NTS.


Subject(s)
Adiposity , Glial Cell Line-Derived Neurotrophic Factor Receptors , Growth Differentiation Factor 15 , Rhombencephalon , Adiposity/genetics , Adiposity/physiology , Animals , Area Postrema/cytology , Area Postrema/metabolism , Area Postrema/physiology , Body Weight/physiology , Diet, High-Fat , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Obesity/metabolism , Rhombencephalon/cytology , Rhombencephalon/metabolism , Rhombencephalon/physiology , Solitary Nucleus/cytology , Solitary Nucleus/metabolism , Solitary Nucleus/physiology
4.
PLoS One ; 10(7): e0133362, 2015.
Article in English | MEDLINE | ID: mdl-26207898

ABSTRACT

The TGF-b superfamily cytokine MIC-1/GDF15 circulates in the blood of healthy humans. Its levels rise substantially in cancer and other diseases and this may sometimes lead to development of an anorexia/cachexia syndrome. This is mediated by a direct action of MIC-1/GDF15 on feeding centres in the hypothalamus and brainstem. More recent studies in germline gene deleted mice also suggest that this cytokine may play a role in physiological regulation of energy homeostasis. To further characterize the role of MIC-1/GDF15 in physiological regulation of energy homeostasis in man, we have examined diurnal and food associated variation in serum levels and whether variation in circulating levels relate to BMI in human monozygotic twin pairs. We found that the within twin pair differences in serum MIC-1/GDF15 levels were significantly correlated with within twin pair differences in BMI, suggesting a role for MIC-1/GDF15 in the regulation of energy balance in man. MIC-1/GDF15 serum levels altered slightly in response to a meal, but comparison with variation its serum levels over a 24 hour period suggested that these changes are likely to be due to bimodal diurnal variation which can alter serum MIC-1/GDF15 levels by about plus or minus 10% from the mesor. The lack of a rapid and substantial postprandial increase in MIC-1/GDF15 serum levels suggests that MIC1/GDF15 is unlikely to act as a satiety factor. Taken together, our findings suggest that MIC-1/GDF15 may be a physiological regulator of energy homeostasis in man, most probably due to actions on long-term regulation of energy homeostasis.


Subject(s)
Body Mass Index , Circadian Rhythm/physiology , Growth Differentiation Factor 15/blood , Postprandial Period/physiology , Satiation/physiology , Adult , Aged , Aged, 80 and over , Cholecystokinin/pharmacology , Circadian Rhythm/drug effects , Energy Metabolism/drug effects , Energy Metabolism/physiology , Female , Glucagon-Like Peptide 1/pharmacology , Humans , Male , Middle Aged , Satiation/drug effects , Twins , Young Adult
5.
PLoS One ; 9(6): e100370, 2014.
Article in English | MEDLINE | ID: mdl-24971956

ABSTRACT

Macrophage inhibitory cytokine-1 (MIC-1/GDF15) modulates food intake and body weight under physiological and pathological conditions by acting on the hypothalamus and brainstem. When overexpressed in disease, such as in advanced cancer, elevated serum MIC-1/GDF15 levels lead to an anorexia/cachexia syndrome. To gain a better understanding of its actions in the brainstem we studied MIC-1/GDF15 induced neuronal activation identified by induction of Fos protein. Intraperitoneal injection of human MIC-1/GDF15 in mice activated brainstem neurons in the area postrema (AP) and the medial (m) portion of the nucleus of the solitary tract (NTS), which did not stain with tyrosine hydroxylase (TH). To determine the importance of these brainstem nuclei in the anorexigenic effect of MIC-1/GDF15, we ablated the AP alone or the AP and the NTS. The latter combined lesion completely reversed the anorexigenic effects of MIC-1/GDF15. Altogether, this study identified neurons in the AP and/or NTS, as being critical for the regulation of food intake and body weight by MIC-1/GDF15.


Subject(s)
Appetite Depressants/pharmacology , Area Postrema/drug effects , Area Postrema/physiology , Growth Differentiation Factor 15/pharmacology , Solitary Nucleus/drug effects , Solitary Nucleus/physiology , Animals , Anorexia/chemically induced , Appetite Depressants/administration & dosage , Growth Differentiation Factor 15/administration & dosage , Infusions, Intraventricular , Male , Mice , Neurons/drug effects , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Tyrosine 3-Monooxygenase/metabolism , Weight Loss/drug effects
6.
J Cachexia Sarcopenia Muscle ; 3(4): 239-43, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22936174

ABSTRACT

Anorexia/cachexia is a common and currently mostly untreatable complication of advanced cancer. It is also a feature of a number of chronic diseases and can also occur as part of the normal ageing process. Over recent years, two different, but sometimes overlapping, processes have been identified to mediate anorexia/cachexia: those that act primarily on muscle reducing its mass and function, and processes that decrease nutrition leading to loss of both fat and muscle. In the case of at least some cancers, the latter process is sometimes driven by marked overexpression of macrophage inhibitory cytokine-1/growth differentiation factor 15 (MIC-1/GDF15). MIC-1/GDF15 is a transforming growth factor beta (TGF-ß) family cytokine that is found in the serum of all normal individuals at an average concentration of about 0.6 ng/ml. Its increased expression in both cancers and other diseases can result in 10-100-fold or more elevation of its serum levels. In experimental animals, serum MIC-1/GDF15 levels at the lower end of this range induce anorexia by direct actions of the circulating cytokine on feeding centres in the brain. Mice with tumours overexpressing MIC-1/GDF15 display decreased food intake, loss of lean and fat mass and cachexia. That this process also mediates anorexia/cachexia in humans is suggested by the fact that there is a direct correlation between the degree of serum MIC-1/GDF15 elevation and the amount of cancer-related weight loss, the first such relationship demonstrated. Further, in experimental animals, weight loss can be reversed by neutralisation of tumour-produced MIC-1/GDF15 with a specific monoclonal antibody, suggesting the possibility of effective therapy of patients with the devastating complication of anorexia/cachexia.

7.
J Infect Dis ; 192(12): 2045-53, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16288366

ABSTRACT

The immunomodulatory drug thalidomide is the treatment of choice for erythema nodosum leprosum (ENL), an inflammatory cutaneous and systemic complication of multibacillary leprosy. To elucidate the mechanism of action of thalidomide in this syndrome, we prospectively investigated 20 patients with ENL who were treated with thalidomide for 21 days. All patients responded to treatment, with the majority of them having complete resolution of cutaneous lesions within 7 days. This response was associated with a marked but transient increase in ex vivo mitogen-induced expression of interleukin (IL)-2 and interferon- gamma by CD4(+) and CD8(+) T cells that was observed on treatment day 7, but these returned to pretreatment levels by day 21. Plasma tumor necrosis factor- alpha levels were not high at baseline, and they increased modestly during treatment. Plasma levels of IL-12 increased steadily during thalidomide treatment. Hence, the therapeutic effect of thalidomide in ENL appears to be associated with transient immune stimulation, which suggests that the drug may promote an active immunoregulatory response.


Subject(s)
Erythema Nodosum/drug therapy , Erythema Nodosum/immunology , Leprosy, Lepromatous/drug therapy , Leprosy, Lepromatous/immunology , Thalidomide/therapeutic use , Adolescent , Adult , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/blood , Erythema Nodosum/pathology , Flow Cytometry , Gene Expression , Humans , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Interferon-gamma/biosynthesis , Leprostatic Agents/pharmacology , Leprostatic Agents/therapeutic use , Leprosy, Lepromatous/pathology , Male , Middle Aged , Prospective Studies , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Skin/pathology , Thalidomide/pharmacology
8.
Int. j. lepr. other mycobact. dis ; 68(1): 40-48, Mar., 2000. tab, graf
Article in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1226927

ABSTRACT

New tools for the detection of leprosy exposure in a community will be necessary for the eradication of leprosy. Candidate leprosy skin-test antigens derived from the fractionation of the leprosy bacillus into cytoplasmic and cell-wall proteins free of immuno-inhibitory mycobacterial lipoglycans and carbohydrates were used in an overnight blood test to determine whether exposure to leprosy can be detected by the production of the cytokine interferon gamma (IFN-gamma). Strong IFN-gamma responses were detected in leprosy contacts to both skin-test antigens compared with control subjects from the same endemic communities. There was little response in patients with tuberculosis. Responses were greatest in contacts with recent leprosy exposure. The implications of these findings for the application of these reagents in a field trial as skin tests to detect exposure to leprosy are discussed in light of the strong association between overnight IFN-gamma to PPD and the tuberculin skin-test responses previously reported.


Subject(s)
Leprosy/genetics , Leprosy/immunology , Interferon-gamma/pharmacology , Interferon-gamma/therapeutic use
10.
Int. j. lepr. other mycobact. dis ; 67(3): 270-278, Sept., 1999. tab, graf
Article in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1226885

ABSTRACT

A retrospective study of new borderline lepromatous and lepromatous patients reporting for multidrug therapy (MDT) for leprosy at the Anandaban Leprosy Hospital, Kathmandu, Nepal, over an 8-year period was conducted to determine the prevalence of erythema nodosum leprosum (ENL), the time and frequency of reactions, and clinical and laboratory parameters associated with ENL. An overall prevalence of ENL in this cohort of 19% was found. One third of these reactions occurred in patients before MDT was given, one third in the first 6 months and one third after 6 months of treatment. Nearly 1 in 10 of the ENL reactions occurred in patients who had completed 2 years of MDT; 45% of patients with ENL had more than one episode. Data collected at the patients' first presentation was used to identify four major risk factors. Patients with lepromatous disease, skin infiltration or a bacterial index (BI) of > 4+ were at significantly increased risk. Patients older than 40 were at significantly decreased risk of ENL. There was a linear relationship in the risk of ENL with an increasing BI and an inverse relationship to increasing age. These observations should enable clinicians to recognize patients at first presentation who will be likely to develop ENL.


Subject(s)
Erythema Nodosum/complications , Erythema Nodosum/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...