Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 65(6): 779-803, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33427946

ABSTRACT

Sensing and measuring meteorological and physiological parameters of humans, animals, and plants are necessary to understand the complex interactions that occur between atmospheric processes and the health of the living organisms. Advanced sensing technologies have provided both meteorological and biological data across increasingly vast spatial, spectral, temporal, and thematic scales. Information and communication technologies have reduced barriers to data dissemination, enabling the circulation of information across different jurisdictions and disciplines. Due to the advancement and rapid dissemination of these technologies, a review of the opportunities for sensing the health effects of weather and climate change is necessary. This paper provides such an overview by focusing on existing and emerging technologies and their opportunities and challenges for studying the health effects of weather and climate change on humans, animals, and plants.


Subject(s)
Climate Change , Weather , Animals , Humans , Meteorology , Plants , Technology
2.
Int J Biometeorol ; 64(2): 253-264, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30919095

ABSTRACT

Religious spaces are an integral part of Indian cities. Unique in their spatiality, they function as socio-cultural hubs drawing users from varied economic and social hierarchies. This study deals with physical and perceptional assessments of micrometeorological conditions in two religious squares namely Hanuman Mandir Square (HMS) and Gurudwara Bangla Sahib Square (GBS) located in New Delhi (28.6° N; 77.2° E), India. The study involved real-time physical measurement of environmental variables such as dry-bulb temperature (Ta, °C), globe temperature (Tg, °C), relative humidity (RH), and air velocity (Va). Variables such as physiological effective temperature (PET), universal thermal comfort index (UTCI), and mean radiant temperature (Tmrt, °C) were computed from measured variables. Concurrent thermal comfort surveys were carried out with 353 respondents in both the squares. The paper describes the thermal characteristics of the studied squares and presents the associated subjective thermal response and preferences of the users. PET was found to correlate well with the subjective responses. The neutral value of PET is found to be 24.7 °C. The neutral PET value of respondents visiting for non-worship purposes was found to be 2.7 °C lesser than those visiting for worship purposes. People visiting the squares for non-worship purpose however were found to be more tolerant of higher PET conditions as compared to others. Factors such as intent of visit, solar exposure, thermal history, and landscape elements were found to have a statistically significant influence on the thermal perception. The paper further summarizes the adaptive opportunities preferred by the users in order to improve thermal comfort in the studied squares. A weighted ranking of adaptive preferences reported by the respondents has also been presented.


Subject(s)
Semantics , Thermosensing , Cities , Climate , India , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...