Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Stress ; 30: 100620, 2024 May.
Article in English | MEDLINE | ID: mdl-38486879

ABSTRACT

Early development is characterized by dynamic transitions in brain maturation, which may be impacted by environmental factors. Here, we sought to determine the effects of social isolation from postweaning and during adolescence on reward behavior and dopaminergic signaling in male rats. Subjects were socially isolated or group housed at postnatal day 21. Three weeks later, extracellular dopamine concentrations were examined in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAc) during a feeding bout. Surprisingly, opposing effects were found in which increased mPFC dopamine concentrations were observed in group housed, but not isolated, rats. In stark contrast, increased dopamine levels were found in the NAc of isolated, but not group housed, rats. Moreover, the absence of an effect in the mPFC of the isolated rats could not be reversed by subsequent group housing, demonstrating the remarkable long-term effects on dopamine signaling dynamics. When provided a highly palatable food, the isolated subjects exhibited a dramatic increase in mPFC dopamine levels when the chocolate was novel, but no effects following chronic chocolate consumption. In contrast, the group housed subjects showed significantly increased dopamine levels only with chronic chocolate consumption. The dopamine changes were correlated with differences in behavioral measures. Importantly, the deficit in reward-related behavior during isolation could be reversed by microinjection of either dopamine or cocaine into the mPFC. Together, these data provide evidence that social isolation from postweaning and during adolescence alters reward-induced dopamine levels in a brain region-specific manner, which has important functional implications for reward-related behavior.

2.
Nicotine Tob Res ; 24(8): 1150-1160, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35090174

ABSTRACT

INTRODUCTION: Although there has been a decrease in the prevalence of tobacco smoking, exposure to nicotine during pregnancy remains a substantial problem worldwide. Further, given the recent escalation in e-cigarette use and legalization of cannabis, it has become essential to understand the effects of nicotine and cannabinoid co-exposure during early developmental stages. AIMS AND METHODS: We systematically examined the effects of nicotine and/or THC prenatal exposure on cognitive behaviors in male and female offspring. Dams were exposed to nicotine vape or vehicle, and oral edible THC or vehicle, throughout pregnancy. Adolescent offspring were then tested in the prepulse inhibition test, novel object recognition task, and novelty suppressed feeding task. RESULTS: At birth, pups from mothers exposed to nicotine vape or oral THC exhibited reduced body weight, compared to control pups. Prenatal nicotine vape exposure resulted in a decreased baseline startle reactivity in adolescent male and female rats, and in females, enhanced sensorimotor gating in the prepulse inhibition test. Prenatal nicotine and THC co-exposure resulted in significant deficits in the prepulse inhibition test in males. Deficits in short-term memory were also found in males prenatally exposed to THC, either alone or with nicotine co-exposure, and in females exposed to THC alone. Finally, in males, a modest increase in anxiety-associated behaviors was found with THC or nicotine exposure in the latency to approach a novel palatable food. CONCLUSIONS: These studies demonstrate differential effects of prenatal exposure to e-cigarette nicotine vape and/or edible THC on cognitive function, with differing effects within male and female groups. IMPLICATIONS: These studies demonstrate an impact of nicotine, THC, or co-exposure during early developmental stages in utero on behavioral outcomes in adolescence. These findings have important translational implications given the continued use of nicotine and THC containing products by pregnant women worldwide, which can be applied to support healthcare and policy efforts restricting nicotine and THC use during pregnancy.


Subject(s)
Electronic Nicotine Delivery Systems , Prenatal Exposure Delayed Effects , Animals , Cognition , Dronabinol/pharmacology , Female , Humans , Male , Nicotine/adverse effects , Pregnancy , Rats
3.
Environ Toxicol Pharmacol ; 86: 103656, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33838329

ABSTRACT

Evidence in humans suggests a correlation between nicotine smoking and severe respiratory symptoms with COVID-19 infection. In lung tissue, angiotensin-converting enzyme 2 (ACE2) appears to mechanistically underlie viral entry. Here, we investigated whether e-cigarette vapor inhalation alters ACE2 and nicotinic acetylcholine receptor (nAChR) expression in male and female mice. In male lung, nicotine vapor inhalation induced a significant increase in ACE2 mRNA and protein, but surprisingly, these differences were not found in females. Further, both vehicle and nicotine vapor inhalation downregulated α5 nAChR subunits in both sexes, while differences were not found in α7 nAChR subunit expression. Finally, blood ACE2 levels did not differ with exposure, indicating that blood sampling is not a sufficient indicator of lung ACE2 changes. Together, these data indicate a direct link between e-cigarette vaping and increased ACE2 expression in male lung tissue, which thereby reveals an underlying mechanism of increased vulnerability to coronavirus infection in individuals vaping nicotine.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/epidemiology , Electronic Nicotine Delivery Systems , Lung/enzymology , Vaping/adverse effects , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/genetics , Animals , DNA, Complementary/biosynthesis , Female , Lung/cytology , Male , Mice , Mice, Inbred C57BL , Nicotine/administration & dosage , Nicotine/pharmacology , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/biosynthesis , Sex Characteristics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
4.
J Pharm Biomed Anal ; 150: 25-32, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29202305

ABSTRACT

The investigation of the possible conversion of cannabidiol (CBD) into Δ9-tetrahydrocannabinol (THC) in vivo after oral administration of CBD is reported herein since recent publications suggested a rapid conversion in simulated gastric fluid. To this end, single high dose of CBD (50mg/kg) was administered orally to rats and their blood was collected after 3 and 6h. A highly sensitive and selective LC-MS/MS method was developed and fully validated in compliance with the Scientific Working Group of Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. This method also involved the optimization of cannabinoids and their metabolites extraction in order to remove co-eluting phospholipids and increase the sensitivity of the MS detection. Neither THC nor its metabolites were detected in rat whole blood after 3 or 6h from CBD administration. After oral administration, the amount of CBD dissolved in olive oil was higher than that absorbed from an ethanolic solution. This could be explained by the protection of lipid excipients towards CBD from acidic gastric juice.


Subject(s)
Cannabidiol/blood , Chromatography, Liquid/methods , Dronabinol/blood , Tandem Mass Spectrometry/methods , Administration, Oral , Animals , Cannabidiol/administration & dosage , Cannabidiol/analysis , Dronabinol/analysis , Ethanol/chemistry , Excipients/chemistry , Male , Olive Oil/chemistry , Rats , Rats, Sprague-Dawley , Time Factors
5.
Sci Rep ; 7: 41723, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28145509

ABSTRACT

In previous works we showed the overexpression of some proteins in biological fluids from patients suffering chronic pain. In this proteomic study we analysed serum from a rat model of neuropathic pain obtained by the chronic constriction injury (CCI) of sciatic nerve, at two time intervals, 2 and 5 weeks after the insult, to find proteins involved in the expression or mediation of pain. Sham-operated and CCI rats were treated with saline or indomethacin. Two weeks after ligation, we identified three serum proteins overexpressed in CCI rats, two of which, alpha-1-macroglobulin and vitamin D-binding protein (VDBP), remained increased 5 weeks post-surgery; at this time interval, we found increased levels of further proteins, namely apolipoprotein A-I (APOA1), apolipoprotein E (APOE), prostaglandin-H2 D-isomerase (PTGDS) and transthyretin (TTR), that overlap the overexpressed proteins found in humans. Indomethacin treatment reversed the effects of ligation. The qPCR analysis showed that transcript levels of APOA1, APOE, PTGDS and VDBP were overexpressed in the lumbar spinal cord (origin of sciatic nerve), but not in the striatum (an unrelated brain region), of CCI rats treated with saline 5 weeks after surgery, demonstrating that the lumbar spinal cord is a possible source of these proteins.


Subject(s)
Blood Proteins , Chronic Pain/blood , Animals , Biomarkers , Blood Proteins/genetics , Blood Proteins/metabolism , Chronic Pain/diagnosis , Chronic Pain/genetics , Disease Models, Animal , Gene Expression Profiling , Humans , Male , Proteomics/methods , Rats , Real-Time Polymerase Chain Reaction , Reproducibility of Results
6.
Front Cell Neurosci ; 10: 155, 2016.
Article in English | MEDLINE | ID: mdl-27378852

ABSTRACT

Previous studies have shown that stress can increase the response of mesolimbic dopaminergic neurons to acute administration of drugs of abuse included ethanol. In this study, we investigated the possible involvement of the mesocortical dopaminergic pathway in the development of ethanol abuse under stress conditions. To this aim we trained both socially isolated (SI) and group housed (GH) rats to self administer ethanol which was made available only 2 ha day (from 11:00 to 13:00 h). Rats have been trained for 3 weeks starting at postnatal day 35. After training, rats were surgically implanted with microdialysis probes under deep anesthesia, and 24 hlater extracellular dopamine concentrations were monitored in medial prefrontal cortex (mPFC) for the 2 hpreceding ethanol administration (anticipatory phase), during ethanol exposure (consummatory phase) and for 2 hafter ethanol removal. Results show that, in GH animals, dopamine extracellular concentration in the mPFC increased as early as 80 min before ethanol presentation (+50% over basal values) and remained elevated for 80 min during ethanol exposure. In SI rats, on the contrary, dopamine extracellular concentration did not show any significant change at any time point. Ethanol consumption was significantly higher in SI than in GH rats. Moreover, mesocortical dopaminergic neurons in SI animals also showed a decreased sensitivity to an acute administration of ethanol with respect to GH rats. Our results show that prolonged exposure to stress, as in social isolation, is able to induce significant changes in the response of mesocortical dopaminergic neurons to ethanol exposure and suggest that these changes might play an important role in the compulsivity observed in ethanol addiction.

SELECTION OF CITATIONS
SEARCH DETAIL
...