Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
iScience ; 27(1): 108624, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38174321

ABSTRACT

The transcription factor Shavenbaby (Svb), the only member of the OvoL family in Drosophila, controls the fate of various epithelial embryonic cells and adult stem cells. Post-translational modification of Svb produces two protein isoforms, Svb-ACT and Svb-REP, which promote adult intestinal stem cell renewal or differentiation, respectively. To define Svb mode of action, we used engineered cell lines and develop an unbiased method to identify Svb target genes across different contexts. Within a given cell type, Svb-ACT and Svb-REP antagonistically regulate the expression of a set of target genes, binding specific enhancers whose accessibility is constrained by chromatin landscape. Reciprocally, Svb-REP can influence local chromatin marks of active enhancers to help repressing target genes. Along the intestinal lineage, the set of Svb target genes progressively changes, together with chromatin accessibility. We propose that Svb-ACT-to-REP transition promotes enterocyte differentiation of intestinal stem cells through direct gene regulation and chromatin remodeling.

2.
Front Genet ; 12: 714152, 2021.
Article in English | MEDLINE | ID: mdl-34527021

ABSTRACT

There is growing evidence that peptides encoded by small open-reading frames (sORF or smORF) can fulfill various cellular functions and define a novel class regulatory molecules. To which extend transcripts encoding only smORF peptides compare with canonical protein-coding genes, yet remain poorly understood. In particular, little is known on whether and how smORF-encoding RNAs might need tightly regulated expression within a given tissue, at a given time during development. We addressed these questions through the analysis of Drosophila polished rice (pri, a.k.a. tarsal less or mille pattes), which encodes four smORF peptides (11-32 amino acids in length) required at several stages of development. Previous work has shown that the expression of pri during epidermal development is regulated in the response to ecdysone, the major steroid hormone in insects. Here, we show that pri transcription is strongly upregulated by ecdysone across a large panel of cell types, suggesting that pri is a core component of ecdysone response. Although pri is produced as an intron-less short transcript (1.5 kb), genetic assays reveal that the developmental functions of pri require an unexpectedly large array of enhancers (spanning over 50 kb), driving a variety of spatiotemporal patterns of pri expression across developing tissues. Furthermore, we found that separate pri enhancers are directly activated by the ecdysone nuclear receptor (EcR) and display distinct regulatory modes between developmental tissues and/or stages. Alike major developmental genes, the expression of pri in a given tissue often involves several enhancers driving apparently redundant (or shadow) expression, while individual pri enhancers can harbor pleiotropic functions across tissues. Taken together, these data reveal the broad role of Pri smORF peptides in ecdysone signaling and show that the cis-regulatory architecture of the pri gene contributes to shape distinct spatial and temporal patterns of ecdysone response throughout development.

3.
Med Sci (Paris) ; 36 Hors série n° 1: 61-66, 2020 Oct.
Article in French | MEDLINE | ID: mdl-33052097

ABSTRACT

Most prevalent cancers are of epithelial origin and their morbidity often results from secondary tumors. Cancer aggressiveness relates to intratumoral heterogeneity, including rare tumor initiating cells that share many features with adult stem cells. Both normal and cancer stem cells are characterized by their plasticity between epithelial and mesenchymal phenotypes, progressing through a series of reversible intermediates. While a core of regulators (Snail, Zeb1-2,...) is renowned to promote epithelial to mesenchyme transition (EMT), OvoL/Shavenbaby factors now emerge as a family of key epithelial stabilizers. Therefore, pro-EMT and OvoL/Shavenbaby transcription factors could provide a molecular rheostat to control stemness and epithelial-mesenchyme plasticity. We address this question in flies, in which the unique OvoL/Shavenbaby factor offers a powerful in vivo paradigm for functional analyses. Our results show that Shavenbaby is critical for adult stem cell homeostasis, and directly interacts with the Hippo pathway to protect stem cells from death.


TITLE: Les facteurs OvoL - Des régulateurs clés de la plasticité épithélium-mésenchyme et des cellules souches. ABSTRACT: Des avancées majeures révèlent l'hétérogénéité intra-tumorale des cancers d'origine épithéliale, incluant des cellules initiatrices de tumeurs qui ressemblent aux cellules souches adultes. Les cellules souches normales et tumorales partagent en effet leur plasticité entre phénotypes épithéliaux et mésenchymateux, progressant par une série d'états intermédiaires, réversibles. Si un cœur de régulateurs (Snail, Zeb, …) est bien connu pour déclencher la transition épithélio-mésenchymateuse (TEM), les facteurs OvoL/Shavenbaby sont récemment apparus comme des stabilisateurs épithéliaux. La balance entre facteurs pro-TEM et OvoL pourrait ainsi réguler la plasticité phénotypique et le potentiel métastatique des tumeurs. Nous abordons cette question chez la drosophile, un modèle pour disséquer in vivo la fonction de Shavenbaby. Nos travaux montrent que Shavenbaby est un régulateur clé de l'homéostasie des cellules souches adultes. Shavenbaby est indispensable à leur survie, agissant en interaction directe avec la voie Hippo pour protéger les cellules souches de la mort cellulaire programmée.


Subject(s)
Adult Stem Cells/physiology , DNA-Binding Proteins/physiology , Epithelial-Mesenchymal Transition/genetics , Neoplastic Stem Cells/physiology , Transcription Factors/physiology , Adult Stem Cells/metabolism , Animals , Cell Plasticity/genetics , DNA-Binding Proteins/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Humans , Multigene Family/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Transcription Factors/genetics
4.
Nat Commun ; 9(1): 5123, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504772

ABSTRACT

To compensate for accumulating damages and cell death, adult homeostasis (e.g., body fluids and secretion) requires organ regeneration, operated by long-lived stem cells. How stem cells can survive throughout the animal life remains poorly understood. Here we show that the transcription factor Shavenbaby (Svb, OvoL in vertebrates) is expressed in renal/nephric stem cells (RNSCs) of Drosophila and required for their maintenance during adulthood. As recently shown in embryos, Svb function in adult RNSCs further needs a post-translational processing mediated by the Polished rice (Pri) smORF peptides and impairing Svb function leads to RNSC apoptosis. We show that Svb interacts both genetically and physically with Yorkie (YAP/TAZ in vertebrates), a nuclear effector of the Hippo pathway, to activate the expression of the inhibitor of apoptosis DIAP1. These data therefore identify Svb as a nuclear effector in the Hippo pathway, critical for the survival of adult somatic stem cells.


Subject(s)
Adult Stem Cells/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , DNA-Binding Proteins/genetics , Drosophila , Drosophila Proteins/genetics , In Situ Nick-End Labeling , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Trans-Activators/genetics , Transcription Factors/genetics , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL