Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Hepatology ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661628

ABSTRACT

BACKGROUND AND AIMS: Surgical resection remains the gold standard for liver tumor treatment, yet the emergence of postoperative liver failure, known as the small-for-size syndrome (SFSS), poses a significant challenge. The activation of hypoxia sensors in an SFSS liver remnant initiated early angiogenesis, improving the vascular architecture, safeguarding against liver failure, and reducing mortality. The study aimed to elucidate vascular remodeling mechanisms in SFSS and their impact on hepatocyte function and subsequent liver failure. APPROACH AND RESULTS: Mice underwent extended partial hepatectomy to induce SFSS, with a subset exposed to hypoxia immediately after surgery. Hypoxia bolstered posthepatectomy survival rates. The early proliferation of liver sinusoidal cells, coupled with recruitment of putative endothelial progenitor cells, increased vascular density, improved lobular perfusion, and limited hemorrhagic events in the regenerating liver under hypoxia. Administration of granulocyte colony-stimulating factor in hepatectomized mice mimicked the effects of hypoxia on vascular remodeling and endothelial progenitor cell recruitment but failed to rescue survival. Compared to normoxia, hypoxia favored hepatocyte function over proliferation, promoting functional preservation in the regenerating remnant. Injection of Adeno-associated virus serotype 8-thyroxine-binding globulin-hepatocyte nuclear factor 4 alpha virus for hepatocyte-specific overexpression of hepatocyte nuclear factor 4 alpha, the master regulator of hepatocyte function, enforced functionality in proliferating hepatocytes but did not rescue survival. The combination of hepatocyte nuclear factor 4 alpha overexpression and granulocyte colony-stimulating factor treatment rescued survival after SFSS-setting hepatectomy. CONCLUSIONS: In summary, SFSS arises from an imbalance and desynchronized interplay between functional regeneration and vascular restructuring. To improve survival following SFSS hepatectomy, it is essential to adopt a 2-pronged strategy aimed at preserving the function of proliferating parenchymal cells and simultaneously attenuating vascular damage.

2.
Cell Stem Cell ; 29(6): 973-989.e10, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35659879

ABSTRACT

The liver carries a remarkable ability to regenerate rapidly after acute zonal damage. Single-cell approaches are necessary to study this process, given the spatial heterogeneity of liver cell types. Here, we use spatially resolved single-cell RNA sequencing (scRNA-seq) to study the dynamics of mouse liver regeneration after acute acetaminophen (APAP) intoxication. We find that hepatocytes proliferate throughout the liver lobule, creating the mitotic pressure required to repopulate the necrotic pericentral zone rapidly. A subset of hepatocytes located at the regenerating front transiently upregulate fetal-specific genes, including Afp and Cdh17, as they reprogram to a pericentral state. Zonated endothelial, hepatic stellate cell (HSC), and macrophage populations are differentially involved in immune recruitment, proliferation, and matrix remodeling. We observe massive transient infiltration of myeloid cells, yet stability of lymphoid cell abundance, in accordance with a global decline in antigen presentation. Our study provides a resource for understanding the coordinated programs of zonal liver regeneration.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Regeneration , Acetaminophen/metabolism , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/metabolism , Hepatic Stellate Cells , Hepatocytes/metabolism , Liver/metabolism , Mice
3.
Gut ; 71(10)2022 01 19.
Article in English | MEDLINE | ID: mdl-35046090

ABSTRACT

BACKGROUND: Colonoscopy is the gold standard for evaluation of inflammation in inflammatory bowel diseases (IBDs), yet entails cumbersome preparations and risks of injury. Existing non-invasive prognostic tools are limited in their diagnostic power. Moreover, transcriptomics of colonic biopsies have been inconclusive in their association with clinical features. AIMS: To assess the utility of host transcriptomics of faecal wash samples of patients with IBD compared with controls. METHODS: In this prospective cohort study, we obtained biopsies and faecal-wash samples from patients with IBD and controls undergoing lower endoscopy. We performed RNAseq of biopsies and matching faecal-washes, and associated them with endoscopic and histological inflammation status. We also performed faecal mass-spectrometry proteomics on a subset of samples. We inferred cell compositions using computational deconvolution and used classification algorithms to identify informative genes. RESULTS: We analysed biopsies and faecal washes from 39 patients (20 IBD, 19 controls). Host faecal-transcriptome carried information that was distinct from biopsy RNAseq and faecal proteomics. Transcriptomics of faecal washes, yet not of biopsies, from patients with histological inflammation were significantly correlated to one another (p=5.3×10-12). Faecal-transcriptome had significantly higher statistical power in identifying histological inflammation compared with transctiptome of intestinal biopsies (150 genes with area under the curve >0.9 in faecal samples vs 10 genes in biopsy RNAseq). These results were replicated in a validation cohort of 22 patients (10 IBD, 12 controls). Faecal samples were enriched in inflammatory monocytes, regulatory T cells, natural killer-cells and innate lymphoid cells. CONCLUSIONS: Faecal wash host transcriptome is a statistically powerful biomarker reflecting histological inflammation. Furthermore, it opens the way to identifying important correlates and therapeutic targets that may be obscured using biopsy transcriptomics.

4.
Nat Commun ; 12(1): 3074, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031373

ABSTRACT

Single-cell RNA sequencing combined with spatial information on landmark genes enables reconstruction of spatially-resolved tissue cell atlases. However, such approaches are challenging for rare cell types, since their mRNA contents are diluted in the spatial transcriptomics bulk measurements used for landmark gene detection. In the small intestine, enterocytes, the most common cell type, exhibit zonated expression programs along the crypt-villus axis, but zonation patterns of rare cell types such as goblet and tuft cells remain uncharacterized. Here, we present ClumpSeq, an approach for sequencing small clumps of attached cells. By inferring the crypt-villus location of each clump from enterocyte landmark genes, we establish spatial atlases for all epithelial cell types in the small intestine. We identify elevated expression of immune-modulatory genes in villus tip goblet and tuft cells and heterogeneous migration patterns of enteroendocrine cells. ClumpSeq can be applied for reconstructing spatial atlases of rare cell types in other tissues and tumors.


Subject(s)
Biological Transport/genetics , Biological Transport/physiology , Computational Biology/methods , Intestines/physiology , Animals , Cell Differentiation , Enterocytes/metabolism , Enteroendocrine Cells/metabolism , Epithelial Cells/metabolism , Epithelium , Gene Expression , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Sequence Analysis, RNA
6.
Cells ; 9(5)2020 05 18.
Article in English | MEDLINE | ID: mdl-32443626

ABSTRACT

Diverse metabolic disorders have been associated with an alteration of N-acylethanolamine (NAE) levels. These bioactive lipids are synthesized mainly by N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and influence host metabolism. We have previously discovered that NAPE-PLD in the intestine and adipose tissue is connected to the pathophysiology of obesity. However, the physiological function of NAPE-PLD in the liver remains to be deciphered. To study the role of liver NAPE-PLD on metabolism, we generated a new mouse model of inducible Napepld hepatocyte-specific deletion (Napepld∆Hep mice). In this study, we report that Napepld∆Hep mice develop a high-fat diet-like phenotype, characterized by an increased fat mass gain, hepatic steatosis and we show that Napepld∆Hep mice are more sensitive to liver inflammation. We also demonstrate that the role of liver NAPE-PLD goes beyond the mere synthesis of NAEs, since the deletion of NAPE-PLD is associated with a marked modification of various bioactive lipids involved in host homeostasis such as oxysterols and bile acids. Collectively these data suggest that NAPE-PLD in hepatocytes is a key regulator of liver bioactive lipid synthesis and a dysregulation of this enzyme leads to metabolic complications. Therefore, deepening our understanding of the regulation of NAPE-PLD could be crucial to tackle obesity and related comorbidities.


Subject(s)
Lipid Metabolism , Liver/enzymology , Liver/metabolism , Phospholipase D/metabolism , Animals , Diet, High-Fat , Gene Deletion , Hepatocytes/enzymology , Inflammation/enzymology , Inflammation/pathology , Mice, Inbred C57BL , Mice, Obese , Organ Specificity , Phenotype , Phospholipase D/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Nat Metab ; 1(9): 899-911, 2019 09.
Article in English | MEDLINE | ID: mdl-31535084

ABSTRACT

The mammalian liver is composed of repeating hexagonal units termed lobules. Spatially resolved single-cell transcriptomics revealed that about half of hepatocyte genes are differentially expressed across the lobule, yet technical limitations impeded reconstructing similar global spatial maps of other hepatocyte features. Here, we show how zonated surface markers can be used to sort hepatocytes from defined lobule zones with high spatial resolution. We apply transcriptomics, miRNA array measurements and mass spectrometry proteomics to reconstruct spatial atlases of multiple zonated features. We demonstrate that protein zonation largely overlaps with mRNA zonation, with the periportal HNF4α as an exception. We identify zonation of miRNAs such as miR-122, and inverse zonation of miRNAs and their hepatocyte target genes, highlighting potential regulation of protein levels through zonated mRNA degradation. Among the targets we find the pericentral Wnt receptors Fzd7 and Fzd8 and the periportal Wnt inhibitors Tcf7l1 and Ctnnbip1. Our approach facilitates reconstructing spatial atlases of multiple cellular features in the liver and other structured tissues.


Subject(s)
Liver/metabolism , Animals , Gene Expression Profiling , Hepatocytes/metabolism , Humans , MicroRNAs/metabolism , Protein Transport , RNA, Messenger/metabolism , Single-Cell Analysis/methods
8.
Am J Pathol ; 189(8): 1569-1581, 2019 08.
Article in English | MEDLINE | ID: mdl-31108103

ABSTRACT

Ductular reaction (DR) is observed in virtually all liver diseases in both humans and rodents. Depending on the injury, DR is confined within the periportal area or invades the parenchyma. On severe hepatocellular injury, invasive DR has been proposed to arise for supplying the liver with new hepatocytes. However, experimental data evidenced that DR contribution to hepatocyte repopulation is at the most modest, unless replicative capacity of hepatocytes is abrogated. Herein, we proposed that invasive DR could contribute to operating hepatobiliary junctions on hepatocellular injury. The choline-deficient ethionine-supplemented mouse model of hepatocellular injury and human liver samples were used to evaluate the hepatobiliary junctional role of the invasive form of DR. Choline-deficient ethionine-supplemented-induced DR expanded as biliary epithelium into the lobule and established new junctions with the canaliculi. By contrast, no new ductular-canalicular junctions were observed in mouse models of biliary obstructive injury exhibiting noninvasive DR. Similarly, in humans, an increased number of hepatobiliary junctions were observed in hepatocellular diseases (viral, drug induced, or metabolic) in which DR invaded the lobule but not in biliary diseases (obstruction or cholangitis) in which DR was contained within the portal mesenchyme. In conclusion, our data in rodents and humans support that invasive DR plays a hepatobiliary junctional role to maintain structural continuity between hepatocytes and ducts in disorders affecting hepatocytes.


Subject(s)
Biliary Tract/metabolism , Hepatocytes/metabolism , Liver Diseases/metabolism , Liver/injuries , Liver/metabolism , Animals , Biliary Tract/pathology , Hepatocytes/pathology , Humans , Liver/pathology , Liver Diseases/pathology , Male , Mice
9.
J Hepatol ; 70(6): 1180-1191, 2019 06.
Article in English | MEDLINE | ID: mdl-30794890

ABSTRACT

BACKGROUND & AIM: Chronic liver diseases are characterized by expansion of the small immature cholangiocytes - a mechanism named ductular reaction (DR) - which have the capacity to differentiate into hepatocytes. We investigated the kinetics of this differentiation, as well as analyzing several important features of the newly formed hepatocytes, such as functional maturity, clonal expansion and resistance to stress in mice with long-term liver damage. METHODS: We tracked cholangiocytes using osteopontin-iCreERT2 and hepatocytes with AAV8-TBG-Cre. Mice received carbon tetrachloride (CCl4) for >24 weeks to induce chronic liver injury. Livers were collected for the analysis of reporter proteins, cell proliferation and death, DNA damage, and nuclear ploidy; hepatocytes were also isolated for RNA sequencing. RESULTS: During liver injury we observed a transient DR and the differentiation of DR cells into hepatocytes as clones that expanded to occupy 12% of the liver parenchyma by week 8. By lineage tracing, we confirmed that these new hepatocytes derived from cholangiocytes but not from native hepatocytes. They had all the features of mature functional hepatocytes. In contrast to the exhausted native hepatocytes, these newly formed hepatocytes had higher proliferative capability, less apoptosis, a lower proportion of highly polyploid nuclei and were better at eliminating DNA damage. CONCLUSIONS: In chronic liver injury, DR cells differentiate into stress-resistant hepatocytes that repopulate the liver. The process might account for the observed parenchymal reconstitution in livers of patients with advanced-stage hepatitis and could be a target for regenerative purposes. LAY SUMMARY: During chronic liver disease, while native hepatocytes are exhausted and genetically unstable, a subset of cholangiocytes clonally expand to differentiate into young, functional and robust hepatocytes. This cholangiocyte cell population is a promising target for regenerative therapies in patients with chronic liver insufficiency.


Subject(s)
Bile Ducts/pathology , Chemical and Drug Induced Liver Injury/pathology , DNA Repair , Hepatocytes/pathology , Animals , Carbon Tetrachloride , Cell Differentiation , Cell Proliferation , Chronic Disease , Liver Neoplasms/etiology , Mice , Polyploidy , Precancerous Conditions/etiology
10.
Int J Mol Sci ; 19(12)2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30567401

ABSTRACT

Liver regeneration is crucial for the maintenance of liver functional mass during homeostasis and diseases. In a disease context-dependent manner, liver regeneration is contributed to by hepatocytes or progenitor cells. As long as they are replicatively competent, hepatocytes are the main cell type responsible for supporting liver size homeostasisand regeneration. The concept that all hepatocytes within the lobule have the same proliferative capacity but are differentially recruited according to the localization of the wound, or whether a yet to be defined sub-population of hepatocytes supports regeneration is still debated. In a chronically or severely injured liver, hepatocytes may enter a state of replicative senescence. In such conditions, small biliary cells activate and expand, a process called ductular reaction (DR). Work in the last few decades has demonstrated that DR cells can differentiate into hepatocytes and thereby contribute to parenchymal reconstitution. In this study we will review the molecular mechanisms supporting these two processes to determine potential targets that would be amenable for therapeutic manipulation to enhance liver regeneration.


Subject(s)
Cell Differentiation/genetics , Liver Regeneration/genetics , Liver/growth & development , Stem Cells , Animals , Cell Lineage/genetics , Cell Lineage/physiology , Cellular Microenvironment/genetics , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Liver Regeneration/physiology , Parenchymal Tissue/cytology , Parenchymal Tissue/physiology
12.
Mol Pharm ; 13(3): 729-36, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26870885

ABSTRACT

Core-shell fibers are emerging as interesting microstructures for the controlled release of drugs, proteins, and complex biological molecules, enabling the fine control of microreservoirs of encapsulated active agents, of the release kinetics, and of the localized delivery. Here we load luminescent molecules and enhanced green fluorescent proteins into the core of fibers realized by coaxial electrospinning. Photoluminescence spectroscopy evidences unaltered molecular emission following encapsulation and release. Moreover, the release kinetics is microscopically investigated by confocal analysis at individual-fiber scale, unveiling different characteristic time scales for diffusional translocation at the core and at the shell. These results are interpreted by a two stage desorption model for the coaxial microstructure, and they are relevant in the design and development of efficient fibrous systems for the delivery of functional biomolecules.


Subject(s)
Electrochemical Techniques/methods , Green Fluorescent Proteins/metabolism , Nanofibers/chemistry , Polymers/chemistry , Diffusion , Humans , Solubility
13.
ACS Nano ; 9(10): 10047-54, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26397166

ABSTRACT

In metal-enhanced fluorescence (MEF), the localized surface plasmon resonances of metallic nanostructures amplify the absorption of excitation light and assist in radiating the consequent fluorescence of nearby molecules to the far-field. This effect is at the base of various technologies that have strong impact on fields such as optics, medical diagnostics, and biotechnology. Among possible emission bands, those in the near-infrared (NIR) are particularly intriguing and widely used in proteomics and genomics due to its noninvasive character for biomolecules, living cells, and tissues, which greatly motivates the development of effective and, eventually, multifunctional NIR-MEF platforms. Here, we demonstrate NIR-MEF substrates based on Au nanocages micropatterned with a tight spatial control. The dependence of the fluorescence enhancement on the distance between the nanocage and the radiating dipoles is investigated experimentally and modeled by taking into account the local electric field enhancement and the modified radiation and absorption rates of the emitting molecules. At a distance around 80 nm, a maximum enhancement up to 2-7 times with respect to the emission from pristine dyes (in the region 660-740 nm) is estimated for films and electrospun nanofibers. Due to their chemical stability, finely tunable plasmon resonances, and large light absorption cross sections, Au nanocages are ideal NIR-MEF agents. When these properties are integrated with the hollow interior and controllable surface porosity, it is feasible to develop a nanoscale system for targeted drug delivery with the diagnostic information encoded in the fluorophore.


Subject(s)
Gold/chemistry , Nanostructures/chemistry , Infrared Rays , Light , Microarray Analysis , Microtechnology , Nanostructures/ultrastructure , Nanotechnology , Optics and Photonics , Surface Plasmon Resonance
14.
J Clin Invest ; 125(10): 3891-903, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26348897

ABSTRACT

In many organs, including the intestine and skin, cancers originate from cells of the stem or progenitor compartment. Despite its nomenclature, the cellular origin of hepatocellular carcinoma (HCC) remains elusive. In contrast to most organs, the liver lacks a defined stem cell population for organ maintenance. Previous studies suggest that both hepatocytes and facultative progenitor cells within the biliary compartment are capable of generating HCC. As HCCs with a progenitor signature carry a worse prognosis, understanding the origin of HCC is of clinical relevance. Here, we used complementary fate-tracing approaches to label the progenitor/biliary compartment and hepatocytes in murine hepatocarcinogenesis. In genotoxic and genetic models, HCCs arose exclusively from hepatocytes but never from the progenitor/biliary compartment. Cytokeratin 19-, A6- and α-fetoprotein-positive cells within tumors were hepatocyte derived. In summary, hepatocytes represent the cell of origin for HCC in mice, and a progenitor signature does not reflect progenitor origin, but dedifferentiation of hepatocyte-derived tumor cells.


Subject(s)
Hepatocytes/pathology , Liver Neoplasms, Experimental/pathology , Neoplastic Stem Cells/pathology , Animals , Bile Ducts/cytology , Biomarkers, Tumor/analysis , Carbon Tetrachloride/toxicity , Carcinogens , Cell Dedifferentiation , Cell Lineage , Cocarcinogenesis , Comparative Genomic Hybridization , Diethylnitrosamine , Gene Expression Profiling , Genes, Reporter , Hepatocytes/chemistry , Hepatocytes/drug effects , Keratin-19/analysis , Liver Cirrhosis, Experimental/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/etiology , Male , Mice , Mice, Transgenic , Microfilament Proteins/analysis , Neoplastic Stem Cells/chemistry , Osteopontin/analysis , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/physiology , Precancerous Conditions/chemically induced , Precancerous Conditions/pathology , Tamoxifen/pharmacology , alpha-Fetoproteins/analysis
15.
ACS Appl Mater Interfaces ; 7(39): 21907-12, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26401889

ABSTRACT

The use of UV light sources is highly relevant in many fields of science, being directly related to all those detection and diagnosis procedures that are based on fluorescence spectroscopy. Depending on the specific application, UV light-emitting materials are desired to feature a number of opto-mechanical properties, including brightness, optical gain for being used in laser devices, flexibility to conform with different lab-on-chip architectures, and tailorable wettability to control and minimize their interaction with ambient humidity and fluids. In this work, we introduce multifunctional, UV-emitting electrospun fibers with both optical gain and greatly enhanced anisotropic hydrophobicity compared to films. Fibers are described by the onset of a composite wetting state, and their arrangement in uniaxial arrays further favors liquid directional control. The low gain threshold, optical losses, plastic nature, flexibility, and stability of these UV-emitting fibers make them interesting for building light-emitting devices and microlasers. Furthermore, the anisotropic hydrophobicity found is strongly synergic with optical properties, reducing interfacial interactions with liquids and enabling smart functional surfaces for droplet microfluidic and wearable applications.


Subject(s)
Luminescent Agents/chemistry , Nanofibers/chemistry , Polymers/chemistry , Electrochemical Techniques , Hydrophobic and Hydrophilic Interactions , Ultraviolet Rays , Wettability
16.
Adv Mater ; 26(38): 6542-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25042888

ABSTRACT

Imprinted, distributed feedback lasers are demonstrated on individual, active electrospun polymer nanofibers. In addition to advantages related to miniaturization, optical confinement and grating nanopatterning lead to a significant threshold reduction compared to conventional thin-film lasers. The possibility of imprinting arbitrary photonic crystal geometries on electrospun lasing nanofibers opens new opportunities for realizing optical circuits and chips.


Subject(s)
Electricity , Feedback , Lasers , Nanofibers/chemistry , Nanotechnology/methods , Benzoic Acid/chemistry , Equipment Design , Nanotechnology/instrumentation , Polymethyl Methacrylate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...