Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int Dent J ; 73(1): 71-78, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35691729

ABSTRACT

INTRODUCTION: The purpose of this study was to determine the degree of similarity between contralateral mandibular incisors utilising 3-dimensional (3D) models obtained from micro-computed tomographic (micro-CT) scans of extracted human teeth. The null hypothesis was that contralateral mandibular incisors do not exhibit matching symmetry. METHODS: Sixty pairs (n = 120) of extracted mandibular incisors were obtained from 30 patients and scanned with micro-CT with a voxel size of 15.0 µm. 3D virtual models of the pulpal cavities were rendered. Geometric morphometric deviation analysis was performed after mirroring, automatic alignment, and co-registration of the models of contralateral teeth root mean square (RMS) errors were calculated. The quantitative analysis of the 3D models included 6 different geometric parameters. Data sets were examined with a 2-sample Kolmogorov-Smirnov test. Post hoc retrospective power analysis was performed to find statistical power (α = 0.05). RESULTS: Contralateral pairs had a narrower distribution in deviation than random pairs. Also, contralateral pairs showed a statistically higher similarity coefficient (5 out of 6 geometric parameters) compared to random pairs (P < .001); no difference was found when comparing central to lateral pairs or between Vertucci type I configurations compared to non-type I. RMS errors had significantly lower Contralateral premolars (CPs) values than random pairs (P < .001). CONCLUSIONS: A high degree of similarity was demonstrated for pairing contralateral mandibular incisors using 3D models. The similarity between contralateral central and lateral incisors suggests that when screened and matched, these 4 teeth might be used in endodontic research where similar root canal anatomy is crucial.


Subject(s)
Dental Pulp Cavity , Incisor , Humans , Dental Pulp Cavity/anatomy & histology , Incisor/diagnostic imaging , Retrospective Studies , Bicuspid/anatomy & histology , Mandible/diagnostic imaging , Cone-Beam Computed Tomography
2.
PeerJ ; 7: e7870, 2019.
Article in English | MEDLINE | ID: mdl-31616604

ABSTRACT

Polymicrobial biofilms play important roles in oral and systemic infections. The oral plaque bacterium Streptococcus gordonii is known to attach to the hyphal cell wall of the fungus Candida albicans to form corn-cob like structures in biofilms. However, the role of C. albicans in formation of polymicrobial biofilms is not completely understood. The objective of this study was to determine the role of C. albicans transcription factors in regulation of polymicrobial biofilms and antibiotic tolerance of S. gordonii. The proteins secreted by C. albicans and S. gordonii in mixed planktonic cultures were determined using mass spectrometry. Antibiotic tolerance of S. gordonii to ampicillin and erythromycin was determined in mixed cultures and mixed biofilms with C. albicans. Additionally, biofilm formation of S. gordonii with C. albicans knock-out mutants of 45 transcription factors that affect cell wall integrity, filamentous growth and biofilm formation was determined. Furthermore, these mutants were also screened for antibiotic tolerance in mixed biofilms with S. gordonii. Analysis of secreted proteomes resulted in the identification of proteins being secreted exclusively in mixed cultures. Antibiotic testing showed that S. gordonii had significantly increased survival in mixed planktonic cultures with antibiotics as compared to single cultures. C. albicans mutants of transcription factors Sfl2, Brg1, Leu3, Cas5, Cta4, Tec1, Tup1, Rim101 and Efg1 were significantly affected in mixed biofilm formation. Also mixed biofilms of S. gordonii with mutants of C. albicans transcription factors, Tec1 and Sfl2, had significantly reduced antibiotic tolerance as compared to control cultures. Our data indicates that C. albicans may have an important role in mixed biofilm formation as well as antibiotic tolerance of S. gordonii in polymicrobial biofilms. C. albicans may play a facilitating role than being just an innocent bystander in oral biofilms and infections.

3.
PeerJ ; 6: e5685, 2018.
Article in English | MEDLINE | ID: mdl-30280048

ABSTRACT

BACKGROUND: Candida albicans is a commensal fungus that inhabits the oral mucosal surface and causes oral and systemic candidiasis. Oral candidiasis most commonly occurs in patients with AIDS, denture wearers and newborn children. Systemic candidiasis occurs mainly in immunocompromised patients and patients admitted to hospitals for prolonged periods. C. albicans homologous genes, DFG5 and DCW1, encode for two closely related cell wall proteins with putative glycosyltransferase enzyme activity and C-terminal GPI-anchors. Past studies have shown that individual DFG5 and DCW1 mutations are viable but simultaneous deletion of DFG5 and DCW1 in C. albicans results in lethality. However, the exact functions of these cell wall based enzymes, which represent potential drug targets, are not understood. METHODS: C. albicans DFG5/DCW1 heterologous and conditional double mutant strains were assessed for growth and biofilm formation in comparison to wild type and parental strains. Cell wall and heat stress susceptibility of the mutant and control strains were assessed using agar spotting assays. Growth was assessed under normal and osmotic stress conditions along with light microscopy imaging. Biofilm dry weight and microscopic imaging analysis of biofilms was performed. Hypha formation in response to serum was analyzed using light microscopy imaging. Western blot analysis of mutant strains and control strains was performed to assess Hog1 basal levels and phosphorylation status. RESULTS: Analysis of the heterologous mutants indicated that Dfg5p is more important for growth while Dcw1p appeared to play a role in cell wall integrity response. The conditional double mutant was observed to be less resistant to cell wall stress. However, growth of the mutants was similar under control and osmotic stress conditions. The mutants were also able to grow similar to wild type under heat stress. Biofilm formation was reduced in the mutants where DFG5 was deleted or suppressed. Hyphal morphogenesis was reduced although germ tube formation was observed in the biofilms of the mutant strains. Basal Hog1 protein levels were reduced or absent in the DFG5 and DCW1 mutants. However, osmotic stress was able to induce Hog1 protein levels comparable to wild type. Hog1 phosphorylation appeared to be slightly reduced although not significantly. In addition to biofilm assays, serum dose response imaging analysis indicated that hyphae formation in DFG5 and DCW1 mutants was defective. CONCLUSIONS: These data indicate that DFG5 and DCW1 are required for hyphal morphogenesis and biofilm formation in C. albicans. These functions may be regulated via basal Hog1 MAPK which is required for transcriptional regulation of chitin synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...