Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Family Med Prim Care ; 11(9): 5686-5688, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36505632

ABSTRACT

Torsion of the fallopian tube during early pregnancy is a very rare phenomenon. Most of them present with acute abdominal pain and are often misdiagnosed with a twisted ovarian cyst, ectopic pregnancy, appendicitis, etc. A 19-year-old female was referred to the medical department for pain abdomen, nausea, and vomiting. Her last menstrual period was 28 days back. The urine pregnancy test was negative. Ultrasonogram (USG) was suggestive of encapsulated exophytic hemorrhagic cyst in the right adnexa arising from the right ovary. A huge right-twisted fimbrial cyst with hemorrhagic contents (14 cm × 12 cm) along with a gangrenous right ovary was evident in emergency laparotomy. Right salpingo-oophorectomy was performed. She was discharged with an uneventful postoperative recovery. She presented again after 2 months with postoperative amenorrhea, nausea, and vomiting. USG suggested 12 weeks of pregnancy, which continued until term. Eventually, a lower segment cesarean section was done for fetal distress. A twisted fallopian tube during pregnancy is a rare phenomenon. A high index of suspicion necessitates prompt diagnosis and prevention of future fertility and obstetric morbidity.

2.
Sci Total Environ ; 822: 153461, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35093379

ABSTRACT

Fast weathering of parent materials and rapid mineralization of organic matter because of prevalent climatic conditions, and subsequent development of acidity and loss/exhaustion of nutrient elements due to intensive agricultural practices have resulted in the degradation of soil fertility and productivity in the vast tropical areas of the world. There is an urgent need for rejuvenation of weathered tropical soils to improve crop productivity and sustainability. For this purpose, biochar has been found to be more effective than other organic soil amendments due to biochar's stability in soil, and thus can extend the benefits over long duration. This review synthesizes information concerning the present status of biochar application in highly weathered tropical soils highlighting promising application strategies for improving resource use efficiency in terms of economic feasibility. In this respect, biochar has been found to improve crop productivity and soil quality consistently through liming and fertilization effects in low pH and infertile soils under low-input conditions typical of weathered tropical soils. This paper identifies several advance strategies that can maximize the effectiveness of biochar application in weathered tropical soils. However, strategies for the reduction of costs of biochar production and application to increase the material's use efficiency need future development. At the same time, policy decision by linking economic benefits with social and environmental issues is necessary for successful implementation of biochar technology in weathered tropical soils. This review recommends that advanced biochar strategies hold potential for sustaining soil quality and agricultural productivity in tropical soils.


Subject(s)
Soil Pollutants , Soil , Agriculture/methods , Charcoal
3.
Chemosphere ; 242: 125247, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31896173

ABSTRACT

Wood vinegar (WV) was applied alone or combined with biochar (BC) to observe their efficiency on suppressing the ammonia (NH3) volatilization from rice paddy soil. Five treatments, i.e., control (240 kg N ha-1 applied in urea), WV-5 and WV-10 (240 kg N ha-1 plus 5 and 10 t WV ha-1, respectively), and their counterparts WV-5-BC and WV-10-BC (WV-5 and WV-10 plus 7 t BC ha-1), were evaluated by a soil columns experiment. The N fertilizer was split applied as basal and two supplementary fertilizations (named BF, SF1 and SF2, respectively). The results showed that WV-5 treatment increased rice grain yield up to 11.2% compared to the control. Compared with the control, four WV-amended treatments, exhibited lower pH values of the floodwater (7.94-8.18 vs 8.47 and 7.85-7.91 vs 7.98) and the topsoil (6.52-6.76 vs 6.82 and 6.82-6.92 vs 6.99) during the BF and SF1 periods. Both WV-5 and WV-10 increased the NH4+-N contents of topsoil by 10.9-17.8% and 16.1-36.2% after BF and SF1, respectively, than control treatment. Additionally, the floodwater of the WV-amended treatments had higher NH4+-N concentration than control during the first three days after N fertilization, which can be attributed to the stimulating effect of WV on soil urease enzyme activity. WV did not effectively reduce NH3 volatilization as hypothesized. Interestingly, four WV-amended had relatively reduced the yield-scale NH3 volatilization by 13.6% than the control. It is suggested that WV needs to be applied with BC at a moderate rate to achieve optimum rice yield and mitigate NH3 volatilization.


Subject(s)
Acetic Acid , Ammonia/analysis , Charcoal/chemistry , Methanol , Ammonia/chemistry , Edible Grain/chemistry , Fertilizers/analysis , Nitrogen/analysis , Oryza/chemistry , Soil/chemistry , Urea/chemistry , Volatilization
4.
Carbohydr Polym ; 230: 115617, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31887888

ABSTRACT

Oral controlled release formulations have been at the center of pharmaceutical research over several decades due to their distinct advantages compared to conventional dosage forms where the entire drug payload is released and absorbed rapidly following administration. Natural polysaccharides are extensively being studied as release modifiers in oral controlled release dosage forms because of their biocompatibility, biodegradability, good safety profile, low-cost availability, and production from renewable resources. Furthermore, polysaccharides can be easily modified by physical or chemical processes to suit specific needs. This article critically reviews some of the important natural polysaccharides with emphasis on their structure, major sources, properties, and applications in various oral modified release systems. The underlying drug release mechanisms from different dosage forms are also discussed. Finally, we outline the critical limitations and challenges that need to be addressed for promoting extensive applications of natural polysaccharides in commercial controlled-release formulations.


Subject(s)
Alginates/chemistry , Cellulose/analogs & derivatives , Chitosan/analogs & derivatives , Drug Carriers/chemistry , Drug Liberation , Stimuli Responsive Polymers/chemistry , Administration, Oral , Animals , Humans
5.
Int J Phytoremediation ; 22(3): 334-341, 2020.
Article in English | MEDLINE | ID: mdl-31523977

ABSTRACT

This study investigated the influence of chemical remediation agents (Bc, M, HA, and Bc + HA) on the growth of the halophyte Lycium ruthenicum and the mechanism of restoration of soil salinization using joint halophyte and chemical remediation in arid fields. The results showed that aboveground organ biomass of L. ruthenicum increased significantly with the chemical remediation agents analyze but the effects on the root system were different. Among the root traits, dry weight of the taproot of L. ruthenicum increased significantly (p < 0.05) by 60.57% with HA; however, the lateral roots were inhibited. With the addition of biochar, the content of sodium ions in roots increased significantly. Further analysis showed that endogenous manganese (Mn) promoted K+ absorption concentration increase from 22.09 to 38.28 g/kg. Moreover, Joint L. ruthenicum and chemical remediation with Bc, HA, M and Bc + HA reduced Na+ to 5854.76, 9396.19, 6530.95 and 11164.29 g/(kg DW⋅m2·a), respectively. Tests revealed that for L. ruthenicum, the aboveground biomass and root morphological plasticity, as well as the synergistic effect of K+ on Na+ transport capacity influenced by endogenous Mn in leaves, were the primary causes of the efficient improvement of saline-alkali land.


Subject(s)
Soil Pollutants , Soil , Biodegradation, Environmental , China , Manganese
6.
Chemosphere ; 237: 124532, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31551202

ABSTRACT

Biochar (BC) potentially accelerates ammonia (NH3) volatilization from rice paddy soils. In this regard, however, application the floating duckweed (FDW) to biochar-amended soil to control the NH3 volatilization is not studied up-to-date. Therefore, the impacts of BC application with and without FDW on the NH3 and nitrous oxide (N2O) emissions, NUE and rice grain yield were evaluated in a soil columns experiment. We repacked soil columns with Hydragric Anthrosol and Haplic Acrisol treated in triplicates with Urea, Urea + BC and Urea + BC + FDW. Total NH3 losses from Hydragric Anthrosol and Haplic Acrisol were 15.2-33.2 kg N ha-1 and 19.6-39.7 kg N ha-1, respectively. Urea + BC treatment recorded 25.6-43.7% higher (p < 0.05) NH3 losses than Urea treatment, attributing to higher pH value of floodwater. Floating duckweed decreased soil pH and therefore significantly reduced (p < 0.05) the NH3 volatilizations from the two soils by 50.6-54.2% over Urea + BC and by 34.2-38.0% over Urea treatment. Total N2O emissions from Hydragric Anthrosol and Haplic Acrisol were 1.19-3.42 kg N ha-1 and 0.67-2.08 kg N ha-1, respectively. Urea + BC treatment increased N2O emissions by 58.8-68.7% and Urea + BC + FDW treatment further increased N2O emission by 187.4-210.4% over Urea treatment. Higher ammonium content of the topsoil, explained the N2O increases in the Urea + BC and Urea + BC + FDW treatments. Urea + BC slightly reduced the rice grain yield and NUE, while the Urea + BC + FDW promoted both rice yield and NUE. Our data indicate that co-application of FDW along with BC in paddy soil could mitigate the NH3 volatilization and enhance the rice grain yield and NUE.


Subject(s)
Ammonia/metabolism , Biodegradation, Environmental , Charcoal/chemistry , Nitrogen/metabolism , Soil/chemistry , Ammonia/chemistry , Edible Grain/chemistry , Fertilizers/analysis , Nitrogen/chemistry , Nitrous Oxide/analysis , Oryza/chemistry , Urea/chemistry , Volatilization
7.
Sci Total Environ ; 697: 134114, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31487592

ABSTRACT

Ammonia (NH3) volatilization is considered as one of the major mechanisms responsible for the loss of nitrogen (N) from soil-plant systems worldwide. This study investigated the effect of biochar amendment to a calcareous soil (pH 7.8) on NH3 volatilization and plant N uptake. In particular, the effect of biochar's feedstock and application rate on both NH3 volatilization and plant growth were quantified using a specially designed closed chamber system. Two well-characterized biochars prepared from poultry manure (PM-BC) and green waste compost (GW-BC) were applied to the soil (0, 0.5, 1, 1.5 and 2% w/w equivalent to 0, 7.5, 15, 22 and 30 t ha-1) and wheat (Triticum aestivum, variety: Calingiri) was grown for 30 days. Both PM-BC and GW-BC decreased NH3 volatilization to a similar degree (by 47 and 38%, respectively), in the soil-plant system compared to the unamended control. Higher plant biomass production of up to 70% was obtained in the closed chamber systems with the addition of biochar. The increase in plant biomass was due to the reduction in N loss as NH3 gas, thereby increasing the N supply to the plants. Plant N uptake was improved by as much as 58% with biochar addition when additional NPK nutrients were supplied to the soil. This study demonstrates that the application of biochars can mitigate NH3 emission from calcareous agricultural cropping soil and that the retained N is plant-available and can improve wheat biomass yield.


Subject(s)
Ammonia/chemistry , Charcoal/chemistry , Fertilizers/analysis , Plant Development , Hydrogen-Ion Concentration , Soil/chemistry
8.
Sci Total Environ ; 678: 43-52, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31075602

ABSTRACT

Soil co-contamination of potentially toxic elements (PTEs) and phthalate esters has become prominent due to its potential adverse effect on human food supply. There is limited information on using wood- and animal-derived biochars for the remediation of co-contaminated soils. Therefore, a pot experiment was conducted using Brassica chinensis L. as a bio-indicator plant to investigate the effect of P. orientalis biochar and pig biochar application on the bioavailability of cadmium (Cd) and di-(2-ethylhexyl) phthalate (DEHP) and on plant physiological parameters (malondialdehyde, proline and soluble sugars). Biochar materials were applied to two soils containing low (LOC) and high (HOC) organic carbon content at rates of 0, 0.5, 1, 2, and 4%. To better understand the influence of biochar, physicochemical properties and X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), Fourier transform-infrared spectrometry (FTIR), scanning electron microscopy (SEM) were characterized. Biochar application increased soil pH, organic carbon content, and available phosphorus content. Increasing biochar application rates decreased DTPA-extractable Cd and extractable DEHP concentrations in both soils. Biochar application reduced the plant uptake of both Cd and DEHP from co-contaminated soils; the maximum reduction of Cd (92.7%) and DEHP (52.0%) was observed in 2% pig biochar-treated LOC soil. The responses of plant physiological parameters to increased biochar applications indicated that less Cd and DEHP were taken up by plants. Pig biochar was more effective (P < 0.05) at reducing the bioavailability of Cd and DEHP in both soils than P. orientalis biochar; therefore, pig biochar had greater potential for improving the quality of the crop. However, the highest application rate (4%) of pig biochar restricted plant seed germination. Key factors influencing the bioavailability of Cd and DEHP in soils were soil organic carbon content, biochar properties (such as surface alkalinity, available phosphorus content and ash content) and biochar application rates.


Subject(s)
Brassica/metabolism , Cadmium/chemistry , Charcoal/chemistry , Diethylhexyl Phthalate/chemistry , Soil Pollutants/chemistry , Environmental Restoration and Remediation , Soil Pollutants/metabolism
9.
Chemosphere ; 227: 345-365, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30999175

ABSTRACT

The beneficial role of biochar on improvement of soil quality, C sequestration, and enhancing crop yield is widely reported. As such there is not much consolidated information available linking biochar modulated soil condition improvement and soil nutrient availability on crop yields. The present review paper addresses the above issues by compilation of world literature on biochar and a new dimension is introduced in this review by performing a meta-analysis of published data by using multivariate statistical analysis. Hence this review is a new in its kind and is useful to the broad spectrum of readers. Generally, alkalinity in biochar increases with increase in pyrolysis temperature and majority of the biochar is alkaline in nature except a few which are acidic. The N content in many biochar was reported to be more than 4% as well as less than 0.5%. Poultry litter biochar is a rich source of P (3.12%) and K (7.40%), while paper mill sludge biochar is higher in Ca content (31.1%) and swine solids biochar in Zn (49810 mg kg-1), and Fe (74800 mg kg-1) contents. The effect of biochar on enhancing soil pH was higher in Alfisol, Ferrosol and Acrisol. Soil application of biochar could on an average increase (78%), decrease (16%), or show no effect on crop yields under different soil types. Biochar produced at a lower pyrolysis temperature could deliver greater soil nutrient availabilities than that prepared at higher temperature. Principal component analysis (PCA) of available data shows an inverse relationship between [pyrolysis temperature and soil pH], and [biochar application rate and soil cation exchange capacity]. The PCA also suggests that the original soil properties and application rate strongly control crop yield stimulations via biochar amendments. Finally, biochar application shows net soil C gains while also serving for increased plant biomass production that strongly recommends biochar as a useful soil amendment. Therefore, the application of biochar to soils emerges as a 'win-win strategy' for sustainable waste management, climate change mitigation and food security.


Subject(s)
Charcoal/pharmacology , Nutrients/analysis , Soil/chemistry , Animals , Biomass , Charcoal/chemistry , Crops, Agricultural/drug effects , Crops, Agricultural/growth & development
10.
Sci Total Environ ; 627: 942-950, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29426218

ABSTRACT

Ammonia (NH3) volatilisation is one of the most important causes of nitrogen (N) loss in soil-plant systems worldwide. Carbon-based amendments such as biochar have been shown to mitigate NH3 volatilisation in agricultural soils to various degrees. In this study, we investigated the influence of biochar feedstocks (poultry manure, green waste compost, and wheat straw), pyrolysis temperatures (250, 350, 450, 500 and 700°C) and application rates (1 and 2%), on NH3 volatilisation from a calcareous soil. The 15 biochars were chemically characterized, and a laboratory incubation study was conducted to assess NH3 volatilisation from the soil over a period of four weeks. Furthermore, changes to the bacterial and fungal communities were assessed via sequencing of phylogenetic marker genes. The study showed that biochar feedstock sources, pyrolysis temperature, and application rates all affected NH3 volatilisation. Overall, low pyrolysis temperature biochars and higher biochar application rates achieved greater reductions in NH3 volatilisation. A feedstock related effect was also observed, with poultry manure biochar reducing NH3 volatilisation by an average of 53% in comparison to 38% and 35% reductions for biochar from green waste compost and wheat straw respectively. Results indicate that the biogeochemistry underlying biochar-mediated reduction in NH3 volatilisation is complex and caused by changes in soil pH, NH3 sorption and microbial community composition (especially ammonia oxidising guilds).

11.
Sci Total Environ ; 612: 561-581, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28865273

ABSTRACT

The search for effective materials for environmental cleanup is a scientific and technological issue of paramount importance. Among various materials, carbon nanotubes (CNTs) possess unique physicochemical, electrical, and mechanical properties that make them suitable for potential applications as environmental adsorbents, sensors, membranes, and catalysts. Depending on the intended application and the chemical nature of the target contaminants, CNTs can be designed through specific functionalization or modification processes. Designer CNTs can remarkably enhance contaminant removal efficiency and facilitate nanomaterial recovery and regeneration. An increasing number of CNT-based materials have been used to treat diverse organic, inorganic, and biological contaminants. These success stories demonstrate their strong potential in practical applications, including wastewater purification and desalination. However, CNT-based technologies have not been broadly accepted for commercial use due to their prohibitive cost and the complex interactions of CNTs with other abiotic and biotic environmental components. This paper presents a critical review of the existing literature on the interaction of various contaminants with CNTs in water and soil environments. The preparation methods of various designer CNTs (surface functionalized and/or modified) and the functional relationships between their physicochemical characteristics and environmental uses are discussed. This review will also help to identify the research gaps that must be addressed for enhancing the commercial acceptance of CNTs in the environmental remediation industry.

12.
Bioresour Technol ; 246: 160-167, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28756126

ABSTRACT

Objective of this study was to investigate the mechanisms of 2,4-Dichlorophynoxy acetic acid (2,4-D) sorption on biochar in aqueous solutions. Sorption isotherm, kinetics, and desorption experiments were performed to identify the role of biochars' feedstock and production conditions on 2,4-D sorption. Biochars were prepared from various green wastes (tea, burcucumber, and hardwood) at two pyrolytic temperatures (400 and 700°C). The tea waste biochar produced at 700°C was further activated with steam under a controlled flow. The sorption of 2,4-D was strongly dependent on the biochar properties such as specific surface area, surface functional groups, and microporosity. The steam activated biochar produced from tea waste showed the highest (58.8mgg-1) 2,4-D sorption capacity, which was attributed to the high specific surface area (576m2g-1). The mechanism of 2,4-D removal from aqueous solution by biochar is mainly attributed to the formation of heterogeneous sorption sites due to the steam activation.


Subject(s)
2,4-Dichlorophenoxyacetic Acid , Charcoal , Water Pollutants, Chemical , Adsorption
13.
J Environ Manage ; 186(Pt 2): 277-284, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27229360

ABSTRACT

Chromium (Cr) is one of the common metals present in the soils and may have an extremely deleterious environmental impact depending on its redox state. Among two common forms, trivalent Cr(III) is less toxic than hexavalent Cr(VI) in soils. Carbon (C) based materials including biochar could be used to alleviate Cr toxicity through converting Cr(VI) to Cr(III). Incubation experiments were conducted to examine Cr(VI) reduction in different soils (Soil 1: pH 7.5 and Soil 2: pH 5.5) with three manures from poultry (PM), cow (CM) and sheep (SM), three respective manure-derived biochars (PM biochar (PM-BC), CM biochar (CM-BC) and SM biochar (SM-BC)) and two modified biochars (modified PM-BC (PM-BC-M) and modified SM-BC (SM-BC-M)). Modified biochar was synthesized by incorporating chitosan and zerovalent iron (ZVI) during pyrolysis. Among biochars, highest Cr(VI) reduction was observed with PM-BC application (5%; w/w) (up to 88.12 mg kg-1; 45% reduction) in Soil 2 (pH 5.5). The modified biochars enhanced Cr(VI) reduction by 55% (SM-BC-M) compared to manure (29%, SM) and manure-derived biochars (40% reduction, SM-BC). Among the modified biochars, SM-BC-M showed a higher Cr(VI) reduction rate (55%) than PM-BC-M (48%) in Soil 2. Various oxygen-containing surface functional groups such as phenolic, carboxyl, carbonyl, etc. on biochar surface might act as a proton donor for Cr(VI) reduction and subsequent Cr(III) adsorption. This study underpins the immense potential of modified biochar in remediation of Cr(VI) contaminated soils.


Subject(s)
Charcoal/chemistry , Chromates/chemistry , Environmental Restoration and Remediation/methods , Manure , Soil Pollutants/chemistry , Adsorption , Animals , Carbon/chemistry , Cattle , Chitosan/chemistry , Chromates/toxicity , Chromium/chemistry , Chromium/toxicity , Female , Oxidation-Reduction , Polycyclic Aromatic Hydrocarbons/chemistry , Poultry , Sheep , Soil/chemistry , South Australia
14.
Chemosphere ; 148: 276-91, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26820777

ABSTRACT

The use of biochar has been suggested as a means of remediating contaminated soil and water. The practical applications of conventional biochar for contaminant immobilization and removal however need further improvements. Hence, recent attention has focused on modification of biochar with novel structures and surface properties in order to improve its remediation efficacy and environmental benefits. Engineered/designer biochars are commonly used terms to indicate application-oriented, outcome-based biochar modification or synthesis. In recent years, biochar modifications involving various methods such as, acid treatment, base treatment, amination, surfactant modification, impregnation of mineral sorbents, steam activation and magnetic modification have been widely studied. This review summarizes and evaluates biochar modification methods, corresponding mechanisms, and their benefits for contaminant management in soil and water. Applicability and performance of modification methods depend on the type of contaminants (i.e., inorganic/organic, anionic/cationic, hydrophilic/hydrophobic, polar/non-polar), environmental conditions, remediation goals, and land use purpose. In general, modification to produce engineered/designer biochar is likely to enhance the sorption capacity of biochar and its potential applications for environmental remediation.


Subject(s)
Charcoal/analysis , Soil Pollutants/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Adsorption
15.
Chemosphere ; 142: 120-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25959224

ABSTRACT

Ammonia (NH3) volatilization is a major nitrogen (N) loss from the soil, especially under tropical conditions, NH3 volatilization results in low N use efficiency by crops. Incubation experiments were conducted using five soils (pH 5.5-9.0), three N sources such as, urea, di-ammonium phosphate (DAP), and poultry manure (PM) and two biochars such as, poultry litter biochar (PL-BC) and macadamia nut shell biochar (MS-BC). Ammonia volatilization was higher at soil with higher pH (pH exceeding 8) due to the increased hydroxyl ions. Among the N sources, urea recorded the highest NH3 volatilization (151.6 mg kg(-1)soil) followed by PM (124.2 mg kg(-1)soil) and DAP (99 mg kg(-1)soil). Ammonia volatilization was reduced by approximately 70% with PL-BC and MS-BC. The decreased NH3 volatilization with biochars is attributed to multiple mechanisms such as NH3 adsorption/immobilization, and nitrification. Moreover, biochar increased wheat dry weight and N uptake as high as by 24.24% and 76.11%, respectively. This study unravels the immense potential of biochar in decreasing N volatilization from soils and simultaneously improving use efficiency by wheat.


Subject(s)
Ammonia/chemistry , Charcoal/pharmacology , Nitrogen/metabolism , Soil/chemistry , Triticum/drug effects , Triticum/metabolism , Adsorption , Animals , Biological Transport/drug effects , Manure/analysis , Poultry , Volatilization
16.
Braz. j. pharm. sci ; 46(4): 785-793, Oct.-Dec. 2010. ilus, graf, tab
Article in English | LILACS | ID: lil-622879

ABSTRACT

The objective of this study was to develop a sustained release dosage form of Trimetazidine dihydrochloride (TMZ) using a natural polymeric carrier prepared in a completely aqueous environment. TMZ was entrapped in calcium alginate beads prepared with sodium alginate by the ionotropic gelation method using calcium chloride as a crosslinking agent. The drug was incorporated either into preformed calcium alginate gel beads (sequential method) or incorporated simultaneously during the gelation stage (simultaneous method). The beads were evaluated for particle size and surface morphology using optical microscopy and SEM, respectively. Beads produced by the sequential method had higher drug entrapment. Drug entrapment in the sequential method was higher with increased CaCl2 and polymer concentration but lower with increased drug concentration. In the simultaneous method, drug entrapment was higher when polymer and drug concentration were increased and also rose to a certain extent with increase in CaCl2 concentration, where further increase resulted in lower drug loading. FTIR studies revealed that there is no interaction between drug and CaCl2. XRD studies showed that the crystalline drug changed to an amorphous state after formulation. Release characteristics of the TMZ loaded calcium alginate beads were studied in enzyme-free simulated gastric and intestinal fluid.


O objetivo deste estudo foi desenvolver forma de liberação controlada de dicloridrato de trimetazidina (TMZ) utilizando transportador plomérico natural em ambiente completamente aquoso. A TMZ foi presa em pérolas de alginato de cálcio preparadas com alginato de sódio pelo método de gelatinização ionotrópica, usando cloreto de cálcio como agente de formação de ligações cruzadas. O fármaco foi incorporado nas pérolas de gel de alginato de cálcio (método sequencial) ou incorporado, simultaneamente, durante o estágio de gelificação (método simultâneo). As pérolas foram avaliadas quanto ao tamanho das partículas e morfologia da superfície utilizando microscopia óptica de SEM, respectivamente. As pérolas produzidas pelo método sequencial apresentaram maior capacidade de inclusão. No método sequencial, a inclusão de fármaco foi maior com o aumento de CaCl2 e da concentração do plímero, mas menor com o aumento da concentração de fármaco. No método simultâneo, a inclusão de fármaco foi mais alta quando as concentrações de fármaco e plímero foram aumentadas e, também, atingiram certa extensão com aumento na concentração de CaCl2, cujo aumento posterior resultou em carga menor de fármaco. Estudos de FTIR revelaram que não há interação entre fármaco e CaCl2. Estudos de XRD mostraram que o fármaco mudou do estado cristalino para o amorfo após a formulação. As características de liberação de TMZ das pérolas carregadas com alginato de cálcio foram estudadas em fluidos simulados, gástrico e intestinal, livres de enzima.


Subject(s)
Calcium/pharmacology , Capsules/analysis , Capsules/pharmacokinetics , Capsules/chemistry , In Vitro Techniques , Drug Design , Gelling Agents , Chemistry, Pharmaceutical/methods , Sodium , Trimetazidine/pharmacology
17.
J Biomater Sci Polym Ed ; 21(13): 1799-814, 2010.
Article in English | MEDLINE | ID: mdl-20557689

ABSTRACT

Diltiazem hydrochloride (DTZ) matrix tablets were prepared using polyacrylamide-grafted sodium alginate (PAam-g-SA) co-polymers having different percentages of grafting and their partially hydrolyzed products with a view to achieve sustained release of the highly water-soluble drug. PAam-g-SA co-polymers having different percentages of grafting were synthesized by free radical polymerization using acrylamide (Aam) as monomer and ammonium persulphate (APS) as initiator, and the resulting co-polymers were subjected to alkaline hydrolysis to produce their corresponding partially hydrolyzed co-polymers. Matrix tablets of DTZ were prepared by wet granulation using either PAam-g-SA co-polymers or partially hydrolyzed PAam-g-SA co-polymers. The effect of percentage grafting, drug load and calcium gluconate (CG), used as excipient, was studied in simulated gastrointestinal fluid. While the tablets prepared using the co-polymer having higher percentages of grafting provided faster drug release (100% in 5.5 h), the tablets prepared with the corresponding hydrolyzed co-polymer released the drug slowly (71% in 12 h). This behaviour in release appeared to be controlled by the relative magnitude of the viscosity and the swelling capacity of the copolymers. Moreover, increase in drug load tended to decrease the drug release from all types of tablets and increase in the amount of CG increased the drug release. FT-IR and DSC studies revealed the absence of any interaction between the drug and the co-polymers. The matrix tablet made of partially hydrolyzed graft co-polymer having the highest percentage of grafting provided the most sustained release of the drug.


Subject(s)
Acrylic Resins/chemistry , Alginates/chemistry , Chemistry, Pharmaceutical/methods , Diltiazem/chemistry , Acrylamide/chemistry , Biomimetics , Calcium Gluconate/chemistry , Calorimetry, Differential Scanning , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/metabolism , Diltiazem/metabolism , Drug Interactions , Gastric Juice/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Intestinal Mucosa/metabolism , Spectroscopy, Fourier Transform Infrared , Tablets , Time Factors
18.
AAPS PharmSciTech ; 10(4): 1348-56, 2009.
Article in English | MEDLINE | ID: mdl-19911286

ABSTRACT

Alginate matrix tablet of diltiazem hydrochloride (DTZ), a water-soluble drug, was prepared using sodium alginate (SAL) and calcium gluconate (CG) by the conventional wet granulation method for sustained release of the drug. The effect of formulation variables like SAL/CG ratio, drug load, microenvironmental pH modulator, and processing variable like compression force on the extent of drug release was examined. The tablets prepared with 1:2 w/w ratio of SAL/CG produced the most sustained release of the drug extending up to 13.5 h. Above and below this ratio, the drug release was faster. The drug load and the hardness of the tablets produced minimal variation in drug release. The addition of alkaline or acidic microenvironmental modulators did not extend the release; instead, these excipients produced somewhat faster release of diltiazem. This study revealed that proper selection of SAL/CG ratio is important to produce alginate matrix tablet by wet granulation method for sustained release of DTZ.


Subject(s)
Diltiazem/administration & dosage , Tablets , Technology, Pharmaceutical , Alginates , Calcium/chemistry , Calorimetry, Differential Scanning , Delayed-Action Preparations , Diltiazem/chemistry , Glucuronic Acid , Hexuronic Acids , Hydrogen-Ion Concentration , Solubility , Spectroscopy, Fourier Transform Infrared , Technology, Pharmaceutical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...