Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 144(15): 6839-6850, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35380805

ABSTRACT

The envelope (E) protein of the SARS-CoV-2 virus is a membrane-bound viroporin that conducts cations across the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane of the host cell to cause virus pathogenicity. The structure of the closed state of the E transmembrane (TM) domain, ETM, was recently determined using solid-state NMR spectroscopy. However, how the channel pore opens to mediate cation transport is unclear. Here, we use 13C and 19F solid-state NMR spectroscopy to investigate the conformation and dynamics of ETM at acidic pH and in the presence of calcium ions, which mimic the ERGIC and lysosomal environment experienced by the E protein in the cell. Acidic pH and calcium ions increased the conformational disorder of the N- and C-terminal residues and also increased the water accessibility of the protein, indicating that the pore lumen has become more spacious. ETM contains three regularly spaced phenylalanine (Phe) residues in the center of the peptide. 19F NMR spectra of para-fluorinated Phe20 and Phe26 indicate that both residues exhibit two sidechain conformations, which coexist within each channel. These two Phe conformations differ in their water accessibility, lipid contact, and dynamics. Channel opening by acidic pH and Ca2+ increases the population of the dynamic lipid-facing conformation. These results suggest an intricate aromatic network that regulates the opening of the ETM channel pore. This aromatic network may be a target for E inhibitors against SARS-CoV-2 and related coronaviruses.


Subject(s)
COVID-19 , Calcium , Calcium/metabolism , Humans , Hydrogen-Ion Concentration , Ions , Lipids , Protein Conformation , SARS-CoV-2 , Water
2.
Commun Biol ; 4(1): 338, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712696

ABSTRACT

The influenza B M2 protein forms a water-filled tetrameric channel to conduct protons across the lipid membrane. To understand how channel water mediates proton transport, we have investigated the water orientation and dynamics using solid-state NMR spectroscopy and molecular dynamics (MD) simulations. 13C-detected water 1H NMR relaxation times indicate that water has faster rotational motion in the low-pH open channel than in the high-pH closed channel. Despite this faster dynamics, the open-channel water shows higher orientational order, as manifested by larger motionally-averaged 1H chemical shift anisotropies. MD simulations indicate that this order is induced by the cationic proton-selective histidine at low pH. Furthermore, the water network has fewer hydrogen-bonding bottlenecks in the open state than in the closed state. Thus, faster dynamics and higher orientational order of water molecules in the open channel establish the water network structure that is necessary for proton hopping.


Subject(s)
Influenza B virus/metabolism , Ion Channel Gating , Ion Channels/metabolism , Viral Proteins/metabolism , Water/metabolism , Histidine , Hydrogen Bonding , Hydrogen-Ion Concentration , Influenza B virus/genetics , Ion Channels/genetics , Molecular Dynamics Simulation , Proton Magnetic Resonance Spectroscopy , Protons , Viral Proteins/genetics
3.
Nat Commun ; 12(1): 172, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420032

ABSTRACT

The dimeric transporter, EmrE, effluxes polyaromatic cationic drugs in a proton-coupled manner to confer multidrug resistance in bacteria. Although the protein is known to adopt an antiparallel asymmetric topology, its high-resolution drug-bound structure is so far unknown, limiting our understanding of the molecular basis of promiscuous transport. Here we report an experimental structure of drug-bound EmrE in phospholipid bilayers, determined using 19F and 1H solid-state NMR and a fluorinated substrate, tetra(4-fluorophenyl) phosphonium (F4-TPP+). The drug-binding site, constrained by 214 protein-substrate distances, is dominated by aromatic residues such as W63 and Y60, but is sufficiently spacious for the tetrahedral drug to reorient at physiological temperature. F4-TPP+ lies closer to the proton-binding residue E14 in subunit A than in subunit B, explaining the asymmetric protonation of the protein. The structure gives insight into the molecular mechanism of multidrug recognition by EmrE and establishes the basis for future design of substrate inhibitors to combat antibiotic resistance.


Subject(s)
Antiporters/chemistry , Antiporters/drug effects , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/drug effects , Lipid Bilayers/chemistry , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , Biological Transport/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/metabolism , Molecular Dynamics Simulation , Protein Conformation
4.
Nat Struct Mol Biol ; 27(12): 1202-1208, 2020 12.
Article in English | MEDLINE | ID: mdl-33177698

ABSTRACT

An essential protein of the SARS-CoV-2 virus, the envelope protein E, forms a homopentameric cation channel that is important for virus pathogenicity. Here we report a 2.1-Å structure and the drug-binding site of E's transmembrane domain (ETM), determined using solid-state NMR spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow pore. The protein deviates from the ideal α-helical geometry due to three phenylalanine residues, which stack within each helix and between helices. Together with valine and leucine interdigitation, these cause a dehydrated pore compared with the viroporins of influenza viruses and HIV. Hexamethylene amiloride binds the polar amino-terminal lumen, whereas acidic pH affects the carboxy-terminal conformation. Thus, the N- and C-terminal halves of this bipartite channel may interact with other viral and host proteins semi-independently. The structure sets the stage for designing E inhibitors as antiviral drugs.


Subject(s)
Coronavirus Envelope Proteins/chemistry , Lipid Bilayers/chemistry , SARS-CoV-2/chemistry , Amantadine/chemistry , Amiloride/analogs & derivatives , Amiloride/chemistry , Antiviral Agents/chemistry , Coronavirus Envelope Proteins/genetics , Dimyristoylphosphatidylcholine/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Models, Molecular , Phenylalanine/chemistry , Phospholipids/chemistry , Protein Conformation , Protein Domains , SARS-CoV-2/genetics
5.
J Am Chem Soc ; 142(43): 18407-18421, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33075224

ABSTRACT

Polyphosphates (polyPs) are ubiquitous polymers in living organisms from bacteria to mammals. They serve a wide variety of biological functions, ranging from energy storage to stress response. In the last two decades, polyPs have been primarily viewed as linear polymers with varying chain lengths. However, recent biochemical data show that small metaphosphates, cyclic oligomers of [PO3](-), can bind to the enzymes ribonuclease A and NAD kinase, raising the question of whether metaphosphates can occur naturally as products of biological activity. Before the 1980s, metaphosphates had been reported in polyPs extracted from various organisms, but these results are considered artifactual due to the extraction and purification protocols. Here, we employ nondestructive 31P solid-state NMR spectroscopy to investigate the chemical structure of polyphosphates in whole cells as well as insoluble fractions of the bacterium Xanthobacter autotrophicus. Isotropic and anisotropic 31P chemical shifts of hydrated whole cells indicate the coexistence of linear and cyclic phosphates. Under our cell growth conditions and the concentrated conditions of the solid-state NMR samples, we found substantial amounts of cyclic phosphates in X. autotrophicus, suggesting that in fresh cells metaphosphate concentrations can be significant. The cellular metaphosphates are identified by comparison with the 31P chemical shift anisotropy of synthetic metaphosphates of known structures. In X. autotrophicus, the metaphosphates have a chemical shift anisotropy that is consistent with an average size of 3-8 phosphate units. These metaphosphates are enriched in insoluble and electron-dense granules. Exogenous hexametaphosphate added to X. autotrophicus cell extracts is metabolized to trimetaphosphates, supporting the presence and biological role of metaphosphates in cells. The definitive evidence for the presence of metaphosphates, reported here in whole bacterial cells for the first time, opens the path for future investigations of the biological function of metaphosphates in many organisms.


Subject(s)
Magnetic Resonance Spectroscopy , Polyphosphates/chemistry , Phosphorus/chemistry , Polyphosphates/metabolism , Xanthobacter/metabolism
6.
Res Sq ; 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32995764

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Successful development of vaccines and antivirals against SARS-CoV-2 requires a comprehensive understanding of the essential proteins of the virus. The envelope (E) protein of SARS-CoV-2 assembles into a cation-selective channel that mediates virus budding, release, and host inflammation response. E blockage reduces virus pathogenicity while E deletion attenuates the virus. Here we report the 2.4 Å structure and drug-binding site of E's transmembrane (TM) domain, determined using solid-state nuclear magnetic resonance (NMR) spectroscopy. In lipid bilayers that mimic the endoplasmic reticulum Golgi intermediate compartment (ERGIC) membrane, ETM forms a five-helix bundle surrounding a narrow central pore. The middle of the TM segment is distorted from the ideal a-helical geometry due to three regularly spaced phenylalanine residues, which stack within each helix and between neighboring helices. These aromatic interactions, together with interhelical Val and Leu interdigitation, cause a dehydrated pore compared to the viroporins of influenza and HIV viruses. Hexamethylene amiloride and amantadine bind shallowly to polar residues at the N-terminal lumen, while acidic pH affects the C-terminal conformation. These results indicate that SARS-CoV-2 E forms a structurally robust but bipartite channel whose N- and C-terminal halves can interact with drugs, ions and other viral and host proteins semi-independently. This structure establishes the atomic basis for designing E inhibitors as antiviral drugs against SARS-CoV-2.

7.
Nat Struct Mol Biol ; 27(2): 160-167, 2020 02.
Article in English | MEDLINE | ID: mdl-32015551

ABSTRACT

The influenza B M2 (BM2) proton channel is activated by acidic pH to mediate virus uncoating. Unlike influenza A M2 (AM2), which conducts protons with strong inward rectification, BM2 conducts protons both inward and outward. Here we report 1.4- and 1.5-Å solid-state NMR structures of the transmembrane domain of the closed and open BM2 channels in a phospholipid environment. Upon activation, the transmembrane helices increase the tilt angle by 6° and the average pore diameter enlarges by 2.1 Å. BM2 thus undergoes a scissor motion for activation, which differs from the alternating-access motion of AM2. These results indicate that asymmetric proton conduction requires a backbone hinge motion, whereas bidirectional conduction is achieved by a symmetric scissor motion. The proton-selective histidine and gating tryptophan in the open BM2 reorient on the microsecond timescale, similar to AM2, indicating that side chain dynamics are the essential driver of proton shuttling.


Subject(s)
Betainfluenzavirus/metabolism , Influenza, Human/virology , Ion Channels/metabolism , Viral Proteins/metabolism , Humans , Hydrogen-Ion Concentration , Influenza, Human/metabolism , Betainfluenzavirus/chemistry , Ion Channels/chemistry , Models, Molecular , Phospholipids/metabolism , Protein Conformation , Protein Domains , Protons , Viral Proteins/chemistry
8.
Proc Natl Acad Sci U S A ; 116(33): 16357-16366, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31358628

ABSTRACT

Misfolding of the microtubule-binding protein tau into filamentous aggregates is characteristic of many neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Determining the structures and dynamics of these tau fibrils is important for designing inhibitors against tau aggregation. Tau fibrils obtained from patient brains have been found by cryo-electron microscopy to adopt disease-specific molecular conformations. However, in vitro heparin-fibrillized 2N4R tau, which contains all four microtubule-binding repeats (4R), was recently found to adopt polymorphic structures. Here we use solid-state NMR spectroscopy to investigate the global fold and dynamics of heparin-fibrillized 0N4R tau. A single set of 13C and 15N chemical shifts was observed for residues in the four repeats, indicating a single ß-sheet conformation for the fibril core. This rigid core spans the R2 and R3 repeats and adopts a hairpin-like fold that has similarities to but also clear differences from any of the polymorphic 2N4R folds. Obtaining a homogeneous fibril sample required careful purification of the protein and removal of any proteolytic fragments. A variety of experiments and polarization transfer from water and mobile side chains indicate that 0N4R tau fibrils exhibit heterogeneous dynamics: Outside the rigid R2-R3 core, the R1 and R4 repeats are semirigid even though they exhibit ß-strand character and the proline-rich domains undergo large-amplitude anisotropic motions, whereas the two termini are nearly isotropically flexible. These results have significant implications for the structure and dynamics of 4R tau fibrils in vivo.


Subject(s)
Alzheimer Disease/genetics , Cytoskeleton/ultrastructure , Microtubule-Associated Proteins/chemistry , tau Proteins/chemistry , Alzheimer Disease/pathology , Amino Acid Sequence/genetics , Cryoelectron Microscopy , Cytoskeleton/chemistry , Cytoskeleton/pathology , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/ultrastructure , Microtubules/chemistry , Microtubules/genetics , Nuclear Magnetic Resonance, Biomolecular , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Binding/genetics , Protein Conformation, beta-Strand/genetics , Protein Domains/genetics , Protein Structure, Secondary , tau Proteins/genetics , tau Proteins/ultrastructure
9.
Nat Struct Mol Biol ; 26(7): 592-598, 2019 07.
Article in English | MEDLINE | ID: mdl-31235909

ABSTRACT

Glucagon and insulin maintain blood glucose homeostasis and are used to treat hypoglycemia and hyperglycemia, respectively, in patients with diabetes. Whereas insulin is stable for weeks in its solution formulation, glucagon fibrillizes rapidly at the acidic pH required for solubility and is therefore formulated as a lyophilized powder that is reconstituted in an acidic solution immediately before use. Here we use solid-state NMR to determine the atomic-resolution structure of fibrils of synthetic human glucagon grown at pharmaceutically relevant low pH. Unexpectedly, two sets of chemical shifts are observed, indicating the coexistence of two ß-strand conformations. The two conformations have distinct water accessibilities and intermolecular contacts, indicating that they alternate and hydrogen bond in an antiparallel fashion along the fibril axis. Two antiparallel ß-sheets assemble with symmetric homodimer cross sections. This amyloid structure is stabilized by numerous aromatic, cation-π, polar and hydrophobic interactions, suggesting mutagenesis approaches to inhibit fibrillization could improve this important drug.


Subject(s)
Amyloid/chemistry , Glucagon/chemistry , Amino Acid Sequence , Amyloid/ultrastructure , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Protein Conformation, beta-Strand , Protein Multimerization , Solubility
10.
J Mol Biol ; 431(14): 2554-2566, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31082440

ABSTRACT

Proton transfer through membrane-bound ion channels is mediated by both water and polar residues of proteins, but the detailed molecular mechanism is challenging to determine. The tetrameric influenza A and B virus M2 proteins form canonical proton channels that use an HxxxW motif for proton selectivity and gating. The BM2 channel also contains a second histidine (His), H27, equidistant from the gating tryptophan, which leads to a symmetric H19xxxW23xxxH27 motif. The proton-dissociation constants (pKa's) of H19 in BM2 were found to be much lower than the pKa's of H37 in AM2. To determine if the lower pKa's result from H27-facilitated proton dissociation of H19, we have now investigated a H27A mutant of BM2 using solid-state NMR. 15N NMR spectra indicate that removal of the second histidine converted the protonation and tautomeric equilibria of H19 to be similar to the H37 behavior in AM2, indicating that the peripheral H27 is indeed the origin of the low pKa's of H19 in wild-type BM2. Measured interhelical distances between W23 sidechains indicate that the pore constriction at W23 increases with the H19 tetrad charge but is independent of the H27A mutation. These results indicate that H27 both accelerates proton dissociation from H19 to increase the inward proton conductance and causes the small reverse conductance of BM2. The proton relay between H19 and H27 is likely mediated by the intervening gating tryptophan through cation-π interactions. This relayed proton transfer may exist in other ion channels and has implications for the design of imidazole-based synthetic proton channels.


Subject(s)
Dipeptides/metabolism , Histidine/metabolism , Magnetic Resonance Spectroscopy/methods , Protons , Tryptophan/metabolism , Viral Matrix Proteins/metabolism , Viral Proteins/metabolism , Amino Acid Sequence , Dipeptides/chemistry , Dipeptides/genetics , Histidine/chemistry , Histidine/genetics , Ion Transport , Models, Molecular , Mutation , Protein Conformation , Tryptophan/chemistry , Tryptophan/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/genetics
11.
Curr Opin Struct Biol ; 58: 183-190, 2019 10.
Article in English | MEDLINE | ID: mdl-31031067

ABSTRACT

The sensitivity of solid-state nuclear magnetic resonance (SSNMR) spectroscopy for structural biology is significantly increased by 1H detection under fast magic-angle spinning (MAS) and by dynamic nuclear polarization (DNP) from electron spins to nuclear spins. The former allows studies of the structure and dynamics of small quantities of proteins under physiological conditions, while the latter permits studies of large biomolecular complexes in lipid membranes and cells, protein intermediates, and protein conformational distributions. We highlight recent applications of these two emerging SSNMR technologies and point out areas for future development.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Membrane Proteins/chemistry
12.
Sci Rep ; 9(1): 3725, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842530

ABSTRACT

Influenza A and B viruses cause seasonal flu epidemics. The M2 protein of influenza B (BM2) is a membrane-embedded tetrameric proton channel that is essential for the viral lifecycle. BM2 is a functional analog of AM2 but shares only 24% sequence identity for the transmembrane (TM) domain. The structure and function of AM2, which is targeted by two antiviral drugs, have been well characterized. In comparison, much less is known about the structure of BM2 and no drug is so far available to inhibit this protein. Here we use solid-state NMR spectroscopy to investigate the conformation of BM2(1-51) in phospholipid bilayers at high pH, which corresponds to the closed state of the channel. Using 2D and 3D correlation NMR experiments, we resolved and assigned the 13C and 15N chemical shifts of 29 residues of the TM domain, which yielded backbone (φ, ψ) torsion angles. Residues 6-28 form a well-ordered α-helix, whereas residues 1-5 and 29-35 display chemical shifts that are indicative of random coil or ß-sheet conformations. The length of the BM2-TM helix resembles that of AM2-TM, despite their markedly different amino acid sequences. In comparison, large 15N chemical shift differences are observed between bilayer-bound BM2 and micelle-bound BM2, indicating that the TM helix conformation and the backbone hydrogen bonding in lipid bilayers differ from the micelle-bound conformation. Moreover, HN chemical shifts of micelle-bound BM2 lack the periodic trend expected for coiled coil helices, which disagree with the presence of a coiled coil structure in micelles. These results establish the basis for determining the full three-dimensional structure of the tetrameric BM2 to elucidate its proton-conduction mechanism.


Subject(s)
Influenza B virus/metabolism , Viral Proteins/chemistry , Hydrogen Bonding , Influenza B virus/chemistry , Lipid Bilayers/chemistry , Protein Multimerization , Protein Structure, Secondary , Viral Matrix Proteins/chemistry
13.
J Phys Chem B ; 122(40): 9302-9313, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30211552

ABSTRACT

Nanometer-range distances are important for restraining the three-dimensional structure and oligomeric assembly of proteins and other biological molecules. Solid-state NMR determination of protein structures typically utilizes 13C-13C and 13C-15N distance restraints, which can only be measured up to ∼7 Å because of the low gyromagnetic ratios of these nuclear spins. To extend the distance reach of NMR, one can harvest the power of 19F, whose large gyromagnetic ratio in principle allows distances up to 2 nm to be measured. However, 19F possesses large chemical shift anisotropies (CSAs) as well as large isotropic chemical shift dispersions, which pose challenges to dipolar coupling measurements. Here, we demonstrate 19F-19F distance measurements at high magnetic fields under fast magic-angle spinning (MAS) using radiofrequency-driven dipolar recoupling (RFDR). We show that 19F-19F cross-peaks for distances up to 1 nm can be readily observed in two-dimensional 19F-19F correlation spectra using less than 5 ms of RFDR mixing. This efficient 19F-19F dipolar recoupling is achieved using practically accessible MAS frequencies of 15-55 kHz, moderate 19F radio frequency field strengths, and no 1H decoupling. Experiments and simulations show that the fastest polarization transfer for aromatic fluorines with the highest distance accuracy is achieved using either fast MAS (e.g., 60 kHz) with large pulse duty cycles (>50%) or slow MAS with strong 19F pulses. Fast MAS considerably reduces relaxation losses during the RFDR π-pulse train, making finite-pulse RFDR under fast-MAS the method of choice. Under intermediate MAS frequencies (25-40 kHz) and intermediate pulse duty cycles (15-30%), the 19F CSA tensor orientation has a quantifiable effect on the polarization transfer rate; thus, the RFDR buildup curves encode both distance and orientation information. At fast MAS, the impact of CSA orientation is minimized, allowing pure distance restraints to be extracted. We further investigate how relayed transfer and dipolar truncation in multifluorine environments affect polarization transfer. This fast-MAS 19F RFDR approach is complementary to 19F spin diffusion for distance measurements and will be the method of choice under high-field fast-MAS conditions that are increasingly important for protein structure determination by solid-state NMR.


Subject(s)
Magnetic Resonance Spectroscopy/methods , N-Formylmethionine Leucyl-Phenylalanine/chemistry , Naphthyridines/chemistry , Sitagliptin Phosphate/chemistry , Fluorine/chemistry , Hypoglycemic Agents/chemistry
14.
Annu Rev Biophys ; 47: 201-222, 2018 05 20.
Article in English | MEDLINE | ID: mdl-29498890

ABSTRACT

Solid-state nuclear magnetic resonance (SSNMR) spectroscopy elucidates membrane protein structures and dynamics in atomic detail to yield mechanistic insights. By interrogating membrane proteins in phospholipid bilayers that closely resemble biological membranes, SSNMR spectroscopists have revealed ion conduction mechanisms, substrate transport dynamics, and oligomeric interfaces of seven-transmembrane helix proteins. Research has also identified conformational plasticity underlying virus-cell membrane fusions by complex protein machineries, and ß-sheet folding and assembly by amyloidogenic proteins bound to lipid membranes. These studies collectively show that membrane proteins exhibit extensive structural plasticity to carry out their functions. Because of the inherent dependence of NMR frequencies on molecular orientations and the sensitivity of NMR frequencies to dynamical processes on timescales from nanoseconds to seconds, SSNMR spectroscopy is ideally suited to elucidate such structural plasticity, local and global conformational dynamics, protein-lipid and protein-ligand interactions, and protonation states of polar residues. New sensitivity-enhancement techniques, resolution enhancement by ultrahigh magnetic fields, and the advent of 3D and 4D correlation NMR techniques are increasingly aiding these mechanistically important structural studies.


Subject(s)
Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Humans
15.
J Am Chem Soc ; 140(4): 1514-1524, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29303574

ABSTRACT

The influenza M2 protein forms a tetrameric proton channel that conducts protons from the acidic endosome into the virion by shuttling protons between water and a transmembrane histidine. Previous NMR studies have shown that this histidine protonates and deprotonates on the microsecond time scale. However, M2's proton conduction rate is 10-1000 s-1, more than 2 orders of magnitude slower than the histidine-water proton-exchange rate. M2 is also known to be conformationally plastic. To address the disparity between the functional time scale and the time scales of protein conformational dynamics and water dynamics, we have now investigated a W41F mutant of the M2 transmembrane domain using solid-state NMR. 13C chemical shifts of the membrane-bound peptide indicate the presence of two distinct tetramer conformations, whose concentrations depend exclusively on pH and hence the charge-state distribution of the tetramers. High-temperature 2D correlation spectra indicate that these two conformations interconvert at a rate of ∼400 s-1 when the +2 and +3 charge states dominate, which gives the first experimental evidence of protein conformational motion on the transport time scale. Protein 13C-detected water 1H T2 relaxation measurements show that channel water relaxes an order of magnitude faster than bulk water and membrane-associated water, indicating that channel water undergoes nanosecond motion in a pH-independent fashion. These results connect motions on three time scales to explain M2's proton-conduction mechanism: picosecond-to-nanosecond motions of water molecules facilitate proton Grotthuss hopping, microsecond motions of the histidine side chain allow water-histidine proton transfer, while millisecond motions of the entire four-helix bundle constitute the rate-limiting step, dictating the number of protons released into the virion.


Subject(s)
Ion Channels/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protons , Thermodynamics , Viral Matrix Proteins/metabolism , Water/metabolism , Ion Channels/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Protein Conformation , Protein Transport , Time Factors , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Water/chemistry
16.
J Mol Biol ; 429(14): 2192-2210, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28535993

ABSTRACT

The influenza M2 protein forms an acid-activated proton channel that is essential for virus replication. The transmembrane H37 selects for protons under low external pH while W41 ensures proton conduction only from the N terminus to the C terminus and prevents reverse current under low internal pH. Here, we address the molecular basis for this asymmetric conduction by investigating the structure and dynamics of a mutant channel, W41F, which permits reverse current under low internal pH. Solid-state NMR experiments show that W41F M2 retains the pH-dependent α-helical conformations and tetrameric structure of the wild-type (WT) channel but has significantly altered protonation and tautomeric equilibria at H37. At high pH, the H37 structure is shifted toward the π tautomer and less cationic tetrads, consistent with faster forward deprotonation to the C terminus. At low pH, the mutant channel contains more cationic tetrads than the WT channel, consistent with faster reverse protonation from the C terminus. 15N NMR spectra allow the extraction of four H37 pKas and show that the pKas are more clustered in the mutant channel compared to WT M2. Moreover, binding of the antiviral drug, amantadine, at the N-terminal pore at low pH did not convert all histidines to the neutral state, as seen in WT M2, but left half of all histidines cationic, unambiguously demonstrating C-terminal protonation of H37 in the mutant. These results indicate that asymmetric conduction in WT M2 is due to W41 inhibition of C-terminal acid activation by H37. When Trp is replaced by Phe, protons can be transferred to H37 bidirectionally with distinct rate constants.


Subject(s)
Histidine/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Tryptophan/metabolism , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Amino Acid Substitution , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Mutant Proteins/genetics , Mutation, Missense , Protein Conformation/drug effects , Protein Multimerization/drug effects , Tryptophan/genetics , Viral Matrix Proteins/genetics
17.
J Phys Chem Lett ; 5(19): 3340-4, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-26278442

ABSTRACT

A detailed understanding of the mechanism of organic cocrystal formation remains elusive. Techniques that interrogate a reacting system in situ are preferred, though experimentally challenging. We report here the results of a solid-state in situ NMR study of the spontaneous formation of a cocrystal between a pharmaceutical mimic (caffeine) and a coformer (malonic acid). Using (13)C magic angle spinning NMR, we show that the formation of the cocrystal may be tracked in real time. We find no direct evidence for a short-lived, chemical shift-resolved amorphous solid intermediate. However, changes in the line width and line center of the malonic acid methylene resonance, in the course of the reaction, provide subtle clues to the mode of mass transfer that underlies cocrystal formation.

18.
Appl Plant Sci ; 1(2)2013 Feb.
Article in English | MEDLINE | ID: mdl-25202518

ABSTRACT

PREMISE OF THE STUDY: We explored a targeted enrichment strategy to facilitate rapid and low-cost next-generation sequencing (NGS) of numerous complete plastid genomes from across the phylogenetic breadth of angiosperms. • METHODS AND RESULTS: A custom RNA probe set including the complete sequences of 22 previously sequenced eudicot plastomes was designed to facilitate hybridization-based targeted enrichment of eudicot plastid genomes. Using this probe set and an Agilent SureSelect targeted enrichment kit, we conducted an enrichment experiment including 24 angiosperms (22 eudicots, two monocots), which were subsequently sequenced on a single lane of the Illumina GAIIx with single-end, 100-bp reads. This approach yielded nearly complete to complete plastid genomes with exceptionally high coverage (mean coverage: 717×), even for the two monocots. • CONCLUSIONS: Our enrichment experiment was highly successful even though many aspects of the capture process employed were suboptimal. Hence, significant improvements to this methodology are feasible. With this general approach and probe set, it should be possible to sequence more than 300 essentially complete plastid genomes in a single Illumina GAIIx lane (achieving ∼50× mean coverage). However, given the complications of pooling numerous samples for multiplex sequencing and the limited number of barcodes (e.g., 96) available in commercial kits, we recommend 96 samples as a current practical maximum for multiplex plastome sequencing. This high-throughput approach should facilitate large-scale plastid genome sequencing at any level of phylogenetic diversity in angiosperms.

SELECTION OF CITATIONS
SEARCH DETAIL
...