Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurovirol ; 26(4): 530-543, 2020 08.
Article in English | MEDLINE | ID: mdl-32524422

ABSTRACT

We previously reported that neuropathic pain was associated with smaller posterior cingulate cortical (PCC) volumes, suggesting that a smaller/dysfunctional PCC may contribute to development of pain via impaired mind wandering. A gap in our previous report was lack of evidence for a mechanism for the genesis of PCC atrophy in HIV peripheral neuropathy. Here we investigate if volumetric differences in the subcortex for those with neuropathic paresthesia may contribute to smaller PCC volumes, potentially through deafferentation of ascending white matter tracts resulting from peripheral nerve damage in HIV neuropathy. Since neuropathic pain and paresthesia are highly correlated, statistical decomposition was used to separate pain and paresthesia symptoms to determine which regions of brain atrophy are associated with both pain and paresthesia and which are associated separately with pain or paresthesia. HIV+ individuals (N = 233) with and without paresthesia in a multisite study underwent structural brain magnetic resonance imaging. Voxel-based morphometry and a segmentation/registration tool were used to investigate regional brain volume changes associated with paresthesia. Analysis of decomposed variables found that smaller midbrain and thalamus volumes were associated with paresthesia rather than pain. However, atrophy in the PCC was related to both pain and paresthesia. Peak thalamic atrophy (p = 0.004; MNI x = - 14, y = - 24, z = - 2) for more severe paresthesia was in a region with reciprocal connections with the PCC. This provides initial evidence that smaller PCC volumes in HIV peripheral neuropathy are related to ascending white matter deafferentation caused by small fiber damage observed in HIV peripheral neuropathy.


Subject(s)
Atrophy/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , HIV Infections/diagnostic imaging , Neuralgia/diagnostic imaging , Paresthesia/diagnostic imaging , Peripheral Nervous System Diseases/diagnostic imaging , Thalamus/diagnostic imaging , Adult , Aged , Atrophy/pathology , Atrophy/virology , Brain Mapping , Cross-Sectional Studies , Female , Gyrus Cinguli/pathology , Gyrus Cinguli/virology , HIV/pathogenicity , HIV Infections/pathology , HIV Infections/virology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuralgia/pathology , Neuralgia/virology , Paresthesia/pathology , Paresthesia/virology , Peripheral Nervous System Diseases/pathology , Peripheral Nervous System Diseases/virology , Thalamus/pathology , Thalamus/virology , White Matter/diagnostic imaging , White Matter/pathology , White Matter/virology
2.
Nat Genet ; 49(3): 457-464, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28092684

ABSTRACT

Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.


Subject(s)
Cerebellar Diseases/genetics , Exonucleases/genetics , Mutation/genetics , Nuclear Proteins/genetics , RNA, Small Nuclear/genetics , Alleles , Animals , Female , Humans , Male , Mice , Neurodegenerative Diseases/genetics , RNA, Messenger/genetics , Spliceosomes/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...