Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(12): 8179-8188, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38470354

ABSTRACT

We introduce a quantum mechanics/molecular mechanics semiclassical method for studying the solvation process of molecules in water at the nuclear quantum mechanical level with atomistic detail. We employ it in vibrational spectroscopy calculations because this is a tool that is very sensitive to the molecular environment. Specifically, we look at the vibrational spectroscopy of thymidine in liquid water. We find that the C═O frequency red shift and the C═C frequency blue shift, experienced by thymidyne upon solvation, are mainly due to reciprocal polarization effects, that the molecule and the water solvent exert on each other, and nuclear zero-point energy effects. In general, this work provides an accurate and practical tool to study quantum vibrational spectroscopy in solution and condensed phase, incorporating high-level and computationally affordable descriptions of both electronic and nuclear problems.

2.
J Phys Chem Lett ; 14(44): 9996-10002, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37906174

ABSTRACT

We apply the full-dimensional Semiclassical Transition State Theory (SCTST) to estimate the rate constant of glycine molecule interconversion between the VIp and Ip conformers. We have reached an electronic structure accuracy up to the explicitly correlated Coupled Cluster method (CCSD(T)-F12b/cc-pVDZ-F12) thanks to our parallel implementation. The reaction has been experimentally investigated in the literature and is known to proceed by quantum mechanical tunneling. The SCTST rates improve over other theoretical methods, and our results align with the experimental measurements, thus confirming the accuracy of the fully coupled anharmonic semiclassical tunneling treatment, providing that the level of electronic structure theory gives a reliable estimate of the reaction barrier height and shape. The comparison with experimental half-life times supports the validity of SCTST for glycine VIp-Ip conformer conversion in the cryogenic temperature range, where this theory is usually not considered applicable due to the onset of the deep tunneling regime.

3.
Phys Chem Chem Phys ; 25(33): 22089-22102, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37610422

ABSTRACT

Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-cis-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.

4.
J Chem Theory Comput ; 18(2): 623-637, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-34995057

ABSTRACT

We describe and test on some organic reactions a parallel implementation strategy to compute anharmonic constants, which are employed in semiclassical transition state theory reaction rate calculations. Our software can interface with any quantum chemistry code capable of a single point energy estimate, and it is suitable for both minimum and transition state geometry calculations. After testing the accuracy and comparing the efficiency of our implementation against other software, we use it to estimate the semiclassical transition state theory (SCTST) rate constant of three reactions of increasing dimensionality, known as examples of heavy atom tunneling. We show how our method is improved in efficiency with respect to other existing implementations. In conclusion, our approach allows SCTST rates and heavy atom tunneling at a high level of electronic structure theory (up to CCSD(T)) to be evaluated. This work shows how crucial the possibility to perform high level ab initio rate evaluations can be.

6.
Mol Ther Methods Clin Dev ; 11: 9-28, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30320151

ABSTRACT

Gene therapy clinical trials require rigorous non-clinical studies in the most relevant models to assess the benefit-to-risk ratio. To support the clinical development of gene therapy for ß-thalassemia, we performed in vitro and in vivo studies for prediction of safety. First we developed newly GLOBE-derived vectors that were tested for their transcriptional activity and potential interference with the expression of surrounding genes. Because these vectors did not show significant advantages, GLOBE lentiviral vector (LV) was elected for further safety characterization. To support the use of hematopoietic stem cells (HSCs) transduced by GLOBE LV for the treatment of ß-thalassemia, we conducted toxicology, tumorigenicity, and biodistribution studies in compliance with the OECD Principles of Good Laboratory Practice. We demonstrated a lack of toxicity and tumorigenic potential associated with GLOBE LV-transduced cells. Vector integration site (IS) studies demonstrated that both murine and human transduced HSCs retain self-renewal capacity and generate new blood cell progeny in the absence of clonal dominance. Moreover, IS analysis showed an absence of enrichment in cancer-related genes, and the genes targeted by GLOBE LV in human HSCs are well known sites of integration, as seen in other lentiviral gene therapy trials, and have not been associated with clonal expansion. Taken together, these integrated studies provide safety data supporting the clinical application of GLOBE-mediated gene therapy for ß-thalassemia.

7.
Blood ; 132(21): 2286-2297, 2018 11 22.
Article in English | MEDLINE | ID: mdl-30209118

ABSTRACT

ß-thalassemias are genetic disorders characterized by anemia, ineffective erythropoiesis, and iron overload. Current treatment of severe cases is based on blood transfusion and iron chelation or allogeneic bone marrow (BM) transplantation. Novel approaches are explored for nontransfusion-dependent patients (thalassemia intermedia) who develop anemia and iron overload. Here, we investigated the erythropoietin (EPO) receptor partner, transferrin receptor 2 (TFR2), as a novel potential therapeutic target. We generated a murine model of thalassemia intermedia specifically lacking BM Tfr2: because their erythroid cells are more susceptible to EPO stimulation, mice show improved erythropoiesis and red blood cell morphology as well as partial correction of anemia and iron overload. The beneficial effects become attenuated over time, possibly due to insufficient iron availability to sustain the enhanced erythropoiesis. Germ line deletion of Tfr2, including haploinsufficiency, had a similar effect in the thalassemic model. Because targeting TFR2 enhances EPO-mediated effects exclusively in cells expressing both receptors, this approach may have advantages over erythropoiesis-stimulating agents in the treatment of other anemias.


Subject(s)
Anemia/genetics , Gene Deletion , Iron Overload/genetics , Receptors, Transferrin/genetics , beta-Thalassemia/genetics , Anemia/metabolism , Anemia/pathology , Anemia/therapy , Animals , Cells, Cultured , Disease Models, Animal , Erythroid Cells/metabolism , Erythroid Cells/pathology , Erythropoiesis , Erythropoietin/metabolism , Female , Genetic Therapy , Iron Overload/metabolism , Iron Overload/pathology , Iron Overload/therapy , Male , Mice, Inbred C57BL , Receptors, Transferrin/metabolism , beta-Thalassemia/metabolism , beta-Thalassemia/pathology , beta-Thalassemia/therapy
8.
Haematologica ; 102(4): e120-e124, 2017 04.
Article in English | MEDLINE | ID: mdl-28034992
9.
Blood ; 125(7): 1170-9, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25499454

ABSTRACT

Transferrin receptor 2 (TFR2) contributes to hepcidin regulation in the liver and associates with erythropoietin receptor in erythroid cells. Nevertheless, TFR2 mutations cause iron overload (hemochromatosis type 3) without overt erythroid abnormalities. To clarify TFR2 erythroid function, we generated a mouse lacking Tfr2 exclusively in the bone marrow (Tfr2(BMKO)). Tfr2(BMKO) mice have normal iron parameters, reduced hepcidin levels, higher hemoglobin and red blood cell counts, and lower mean corpuscular volume than normal control mice, a phenotype that becomes more evident in iron deficiency. In Tfr2(BMKO) mice, the proportion of nucleated erythroid cells in the bone marrow is higher and the apoptosis lower than in controls, irrespective of comparable erythropoietin levels. Induction of moderate iron deficiency increases erythroblasts number, reduces apoptosis, and enhances erythropoietin (Epo) levels in controls, but not in Tfr2(BMKO) mice. Epo-target genes such as Bcl-xL and Epor are highly expressed in the spleen and in isolated erythroblasts from Tfr2(BMKO) mice. Low hepcidin expression in Tfr2(BMKO) is accounted for by erythroid expansion and production of the erythroid regulator erythroferrone. We suggest that Tfr2 is a component of a novel iron-sensing mechanism that adjusts erythrocyte production according to iron availability, likely by modulating the erythroblast Epo sensitivity.


Subject(s)
Erythrocytes/physiology , Erythropoiesis/genetics , Receptors, Transferrin/physiology , Animals , Apoptosis/genetics , Erythrocyte Count , Erythropoietin/metabolism , Female , Hemoglobins/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
Blood ; 119(21): 5021-9, 2012 May 24.
Article in English | MEDLINE | ID: mdl-22490684

ABSTRACT

Inappropriately low expression of the key iron regulator hepcidin (HAMP) causes iron overload in untransfused patients affected by ß-thalassemia intermedia and Hamp modulation provides improvement of the thalassemic phenotype of the Hbb(th3/+) mouse. HAMP expression is activated by iron through the bone morphogenetic protein (BMP)-son of mothers against decapentaplegic signaling pathway and inhibited by ineffective erythropoiesis through an unknown "erythroid regulator." The BMP pathway is inactivated by the serine protease TMPRSS6 that cleaves the BMP coreceptor hemojuvelin. Here, we show that homozygous loss of Tmprss6 in Hbb(th3/+) mice improves anemia and reduces ineffective erythropoiesis, splenomegaly, and iron loading. All these effects are mediated by Hamp up-regulation, which inhibits iron absorption and recycling. Because Hbb(th3/+) mice lacking Tmprss6 show residual ineffective erythropoiesis, our results indicate that Tmprss6 is essential for Hamp inhibition by the erythroid regulator. We also obtained partial correction of the phenotype in Tmprss6 haploinsufficient Hbb(th3/+) male but not female mice and showed that the observed sex difference reflects an unequal balance between iron and erythropoiesis-mediated Hamp regulation. Our study indicates that preventing iron overload improves ß-thalassemia and strengthens the essential role of Tmprss6 for Hamp suppression, providing a proof of concept that Tmprss6 manipulation can offer a novel therapeutic option in this condition.


Subject(s)
Gene Deletion , Iron Overload/genetics , Membrane Proteins/genetics , Serine Endopeptidases/genetics , beta-Thalassemia/genetics , Animals , Antimicrobial Cationic Peptides/antagonists & inhibitors , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Disease Models, Animal , Erythropoiesis/genetics , Erythropoiesis/physiology , Female , Hepcidins , Iron Overload/etiology , Iron Overload/metabolism , Iron Overload/prevention & control , Male , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Serine Endopeptidases/physiology , Up-Regulation/genetics , beta-Thalassemia/complications , beta-Thalassemia/metabolism , beta-Thalassemia/pathology
11.
Proc Natl Acad Sci U S A ; 108(4): 1705-10, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21220308

ABSTRACT

Cardiac pacemaking generation and modulation rely on the coordinated activity of several processes. Although a wealth of evidence indicates a relevant role of the I(f) ("funny," or pacemaker) current, whose molecular constituents are the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels and particularly HCN4, work with mice where Hcn genes were knocked out, or functionally modified, has challenged this view. However, no previous studies used a cardiac-specific promoter to induce HCN4 ablation in adult mice. We report here that, in an inducible and cardiac-specific HCN4 knockout (ciHCN4-KO) mouse model, ablation of HCN4 consistently leads to progressive development of severe bradycardia (∼50% reduction of original rate) and AV block, eventually leading to heart arrest and death in about 5 d. In vitro analysis of sinoatrial node (SAN) myocytes isolated from ciHCN4-KO mice at the mean time of death revealed a strong reduction of both the I(f) current (by ∼70%) and of the spontaneous rate (by ∼60%). In agreement with functional results, immunofluorescence and Western blot analysis showed reduced expression of HCN4 protein in SAN tissue and cells. In ciHCN4-KO animals, the residual I(f) was normally sensitive to ß-adrenergic receptor (ß-AR) modulation, and the permanence of rate response to ß-AR stimulation was observed both in vivo and in vitro. Our data show that cardiac HCN4 channels are essential for normal heart impulse generation and conduction in adult mice and support the notion that dysfunctional HCN4 channels can be a direct cause of rhythm disorders. This work contributes to identifying the molecular mechanism responsible for cardiac pacemaking.


Subject(s)
Bradycardia/physiopathology , Cyclic Nucleotide-Gated Cation Channels/physiology , Heart Block/physiopathology , Heart/physiopathology , Action Potentials/drug effects , Animals , Blotting, Western , Bone Density Conservation Agents/pharmacology , Bradycardia/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics , Electrocardiography , Female , Fluorescent Antibody Technique , Heart/drug effects , Heart Block/genetics , Heart Rate/drug effects , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Receptors, Adrenergic, beta/metabolism , Sinoatrial Node/drug effects , Sinoatrial Node/metabolism , Sinoatrial Node/physiology , Tamoxifen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...