Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(47): e2214662119, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36375085

ABSTRACT

Second harmonic generation microscopy (SHG) is generally acknowledged as a powerful tool for the label-free three-dimensional visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Despite the great need, progress in super-resolved SHG imaging lags behind the developments reported over the past years in fluorescence-based optical nanoscopy. In this work, we demonstrate super-resolved re-scan SHG, qualitatively and quantitatively showing on collagenous tissues the available resolution advantage over the diffraction limit. We introduce as well super-resolved re-scan two-photon excited fluorescence microscopy, an imaging modality not explored to date.


Subject(s)
Second Harmonic Generation Microscopy , Second Harmonic Generation Microscopy/methods , Microscopy, Fluorescence/methods , Collagen , Photons , Radionuclide Imaging
2.
Sci Rep ; 12(1): 4944, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322191

ABSTRACT

The SpoVA proteins make up a channel in the inner membrane (IM) of Bacillus subtilis spores. This channel responds to signals from activated germinant receptors (GRs), and allows release of Ca2+-DPA from the spore core during germination. In the current work, we studied the location and dynamics of SpoVAEa in dormant spores. Notably, the SpoVAEa-SGFP2 proteins were present in a single spot in spores, similar to the IM complex formed by all GRs termed the germinosome. However, while the GRs' spot remains in one location, the SpoVAEa-SGFP2 spot in the IM moved randomly with high frequency. It seems possible that this movement may be a means of communicating germination signals from the germinosome to the IM SpoVA channel, thus stimulating CaDPA release in germination. The dynamics of the SpoVAEa-SGFP2 and its surrounding IM region as stained by fluorescent dyes were also tracked during spore germination, as the dormant spore IM appeared to have an immobile germination related functional microdomain. This microdomain disappeared around the time of appearance of a germinated spore, and the loss of fluorescence of the IM with fluorescent dyes, as well as the appearance of peak SpoVAEa-SGFP2 fluorescent intensity occurred in parallel. These observed events were highly related to spores' rapid phase darkening, which is considered as due to rapid Ca2+DPA release. We also tested the response of SpoVAEa and the IM to thermal treatments at 40-80 °C. Heat treatment triggered an increase of green autofluorescence, which is speculated to be due to coat protein denaturation, and 80 °C treatments induce the appearance of phase-grey-like spores. These spores presumably have a similar intracellular physical state as the phase grey spores detected in the germination but lack the functional proteins for further germination events.


Subject(s)
Bacillus subtilis , Spores, Bacterial , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Fluorescent Dyes/metabolism , Membrane Lipids/metabolism , Picolinic Acids/metabolism , Spores, Bacterial/metabolism
3.
J Vis Exp ; (146)2019 04 15.
Article in English | MEDLINE | ID: mdl-31033949

ABSTRACT

The small size of spores and the relatively low abundance of germination proteins, cause difficulties in their microscopic analyses using epifluorescence microscopy. Super-resolution three-dimensional Structured Illumination Microscopy (3D-SIM) is a promising tool to overcome this hurdle and reveal the molecular details of the process of germination of Bacillus subtilis (B. subtilis) spores. Here, we describe the use of a modified SIMcheck (ImageJ)-assistant 3D imaging process and fluorescent reporter proteins for SIM microscopy of B. subtilis spores' germinosomes, cluster(s) of germination proteins. We also present a (standard)3D-SIM imaging procedure for FM4-64 staining of B. subtilis spore membranes. By using these procedures, we obtained unsurpassed resolution for germinosome localization and show that >80% of B. subtilis KGB80 dormant spores obtained after sporulation on defined minimal MOPS medium have one or two GerD-GFP and GerKB-mCherry foci. Bright foci were also observed in FM4-64 stained spores' 3D-SIM images suggesting that inner membrane lipid domains of different fluidity likely exist. Further studies that use double labeling procedures with membrane dyes and germinosome reporter proteins to assess co-localization and thus get an optimal overview of the organization of Bacillus germination proteins in the inner spore membrane are possible.


Subject(s)
Bacillus subtilis/physiology , Cell Membrane/metabolism , Spores, Bacterial/physiology , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Fluorescence , Imaging, Three-Dimensional
5.
Appl Environ Microbiol ; 82(21): 6463-6471, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27565617

ABSTRACT

Intracellular pH (pHi) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pHi homeostasis. Unfortunately, accurate pHi quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pHi at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pHi in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pHi and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pHi regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. IMPORTANCE: This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous growth behavior upon the addition of weak organic acid food preservatives. Generally, these data are gathered in the form of plate counting of samples incubated with the acids. Here, we visualize the underlying heterogeneity in cellular pH homeostasis, opening up avenues for mechanistic analyses of the heterogeneity in the weak acid stress response. Thus, microbial risk assessment can become more robust, widening the scope of use of these well-known weak organic acid food preservatives.


Subject(s)
Bacillus subtilis/physiology , Cytoplasm/metabolism , Sorbic Acid/pharmacology , Stress, Physiological , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacillus subtilis/ultrastructure , Cytoplasm/chemistry , Cytoplasm/drug effects , Dermatitis, Phototoxic , Food Preservation , Green Fluorescent Proteins/genetics , Hydrogen-Ion Concentration , Potassium Acetate/pharmacology , Single-Cell Analysis , Time-Lapse Imaging
6.
J Cell Sci ; 128(20): 3714-9, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26330528

ABSTRACT

Hemidesmosomes have been extensively studied with immunofluorescence microscopy, but owing to its limited resolution, the precise organization of hemidesmosomes remains poorly understood. We studied hemidesmosome organization in cultured keratinocytes with two- and three-color super-resolution microscopy. We observed that, in the cell periphery, nascent hemidesmosomes are associated with individual keratin filaments and that ß4 integrin (also known as ITGB4) is distributed along, rather than under, keratin filaments. By applying innovative methods to quantify molecular distances, we demonstrate that the hemidesmosomal plaque protein plectin interacts simultaneously and asymmetrically with ß4 integrin and keratin. Furthermore, we show that BP180 (BPAG2, also known as collagen XVII) and BP230 (BPAG1e, an epithelial splice variant of dystonin) are characteristically arranged within hemidesmosomes with BP180 surrounding a central core of BP230 molecules. In skin cross-sections, hemidesmosomes of variable sizes could be distinguished with BP230 and plectin occupying a position in between ß4 integrin and BP180, and the intermediate filament system. In conclusion, our data provide a detailed view of the molecular architecture of hemidesmosomes in cultured keratinocytes and skin.


Subject(s)
Autoantigens/metabolism , Carrier Proteins/metabolism , Cytoskeletal Proteins/metabolism , Hemidesmosomes/metabolism , Integrin beta4/metabolism , Keratinocytes/metabolism , Keratins/metabolism , Nerve Tissue Proteins/metabolism , Non-Fibrillar Collagens/metabolism , Skin/metabolism , Autoantigens/genetics , Carrier Proteins/genetics , Cytoskeletal Proteins/genetics , Dystonin , Hemidesmosomes/genetics , Hemidesmosomes/ultrastructure , Humans , Integrin beta4/genetics , Keratinocytes/ultrastructure , Keratins/genetics , Microscopy, Fluorescence , Nerve Tissue Proteins/genetics , Non-Fibrillar Collagens/genetics , Skin/ultrastructure , Collagen Type XVII
7.
Food Microbiol ; 52: 88-96, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26338121

ABSTRACT

Bacillus subtilis spores are a problem for the food industry as they are able to survive preservation processes. The spores often reside in food products, where their inherent protection against various stress treatments causes food spoilage. Sorbic acid is widely used as a weak acid preservative in the food industry. Its effect on spore germination and outgrowth in a combined, 'hurdle', preservation setting has gained limited attention. Therefore, the effects of mild sorbic acid (3 mM), heat-treatment (85 °C for 10 min) and a combination of both mild stresses on germination and outgrowth of B. subtilis 1A700 spores were analysed at single spore level. The heat-treatment of the spore population resulted in a germination efficiency of 46.8% and an outgrowth efficiency of 32.9%. In the presence of sorbic acid (3 mM), the germination and outgrowth efficiency was 93.3% and 80.4% respectively whereas the combined heat and sorbic acid stress led to germination and outgrowth efficiencies of 52.7% and 27.0% respectively. The heat treatment clearly primarily affected the germination process, while sorbic acid affected the outgrowth and generation time. In addition a new 'burst' time-point was defined as the time-point at which the spore coat visibly breaks and/or is shed. The combined stresses had a synergistic effect on the time of the end of germination to the burst time-point, increasing both the mean and its variation more than either of the single stresses did.


Subject(s)
Bacillus subtilis/drug effects , Sorbic Acid/pharmacology , Spores, Bacterial/cytology , Bacillus subtilis/chemistry , Bacillus subtilis/cytology , Food Microbiology , Hot Temperature , Hydrogen-Ion Concentration , Spores, Bacterial/chemistry , Spores, Bacterial/drug effects
8.
PLoS One ; 10(7): e0131756, 2015.
Article in English | MEDLINE | ID: mdl-26161965

ABSTRACT

Co-localization analysis is a widely used tool to seek evidence for functional interactions between molecules in different color channels in microscopic images. Here we extend the basic co-localization analysis by including the orientations of the structures on which the molecules reside. We refer to the combination of co-localization of molecules and orientational alignment of the structures on which they reside as co-orientation. Because the orientation varies with the length scale at which it is evaluated, we consider this scale as a separate informative dimension in the analysis. Additionally we introduce a data driven method for testing the statistical significance of the co-orientation and provide a method for visualizing the local co-orientation strength in images. We demonstrate our methods on simulated localization microscopy data of filamentous structures, as well as experimental images of similar structures acquired with localization microscopy in different color channels. We also show that in cultured primary HUVEC endothelial cells, filaments of the intermediate filament vimentin run close to and parallel with microtubuli. In contrast, no co-orientation was found between keratin and actin filaments. Co-orientation between vimentin and tubulin was also observed in an endothelial cell line, albeit to a lesser extent, but not in 3T3 fibroblasts. These data therefore suggest that microtubuli functionally interact with the vimentin network in a cell-type specific manner.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Intermediate Filaments/metabolism , Tubulin/metabolism , Vimentin/metabolism , 3T3 Cells , Algorithms , Animals , Cell Line , Cells, Cultured , Computational Biology/methods , Computer Simulation , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mice , Microscopy, Fluorescence , Models, Biological , Protein Binding
9.
PLoS One ; 10(5): e0126220, 2015.
Article in English | MEDLINE | ID: mdl-25970180

ABSTRACT

Today HIV-1 infection is recognized as a chronic disease with obligatory lifelong treatment to keep viral titers below detectable levels. The continuous intake of antiretroviral drugs however, leads to severe and even life-threatening side effects, supposedly by the deleterious impact of nucleoside-analogue type compounds on the functioning of the mitochondrial DNA polymerase. For detailed investigation of the yet partially understood underlying mechanisms, the availability of a versatile model system is crucial. We therefore set out to develop the use of Caenorhabditis elegans to study drug induced mitochondrial toxicity. Using a combination of molecular-biological and functional assays, combined with a quantitative analysis of mitochondrial network morphology, we conclude that anti-retroviral drugs with similar working mechanisms can be classified into distinct groups based on their effects on mitochondrial morphology and biochemistry. Additionally we show that mitochondrial toxicity of antiretroviral drugs cannot be exclusively attributed to interference with the mitochondrial DNA polymerase.


Subject(s)
Anti-HIV Agents/toxicity , Caenorhabditis elegans/drug effects , DNA, Mitochondrial/antagonists & inhibitors , Drug Evaluation/methods , Mitochondria/drug effects , Reverse Transcriptase Inhibitors/toxicity , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Didanosine/toxicity , Dideoxynucleosides/toxicity , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Biological , Oxygen Consumption/drug effects , Stavudine/toxicity , Ubiquinone/antagonists & inhibitors , Ubiquinone/metabolism , Zalcitabine/toxicity , Zidovudine/toxicity
10.
Methods Mol Biol ; 1265: 367-77, 2015.
Article in English | MEDLINE | ID: mdl-25634288

ABSTRACT

Caenorhabditis elegans is a highly malleable model system, intensively used for functional, genetic, cytometric, and integrative studies. Due to its simplicity and large muscle cell number, C. elegans has frequently been used to study mitochondrial deficiencies caused by disease or drug toxicity. Here, we describe a robust and efficient method to visualize and quantify mitochondrial morphology in vivo. This method has many practical and technical advantages above traditional (manual) methods and provides a comprehensive analysis of mitochondrial morphology.


Subject(s)
Caenorhabditis elegans/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Mitochondria/metabolism , Animals , Image Processing, Computer-Assisted , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods
11.
Eukaryot Cell ; 14(1): 78-85, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398376

ABSTRACT

Nuclear dynamics can vary widely between fungal species and between stages of development of fungal colonies. Here we compared nuclear dynamics and mitotic patterns between germlings and mature hyphae in Fusarium oxysporum. Using fluorescently labeled nuclei and live-cell imaging, we show that F. oxysporum is subject to a developmental transition from a uninucleate to a multinucleate state after completion of colony initiation. We observed a special type of hypha that exhibits a higher growth rate, possibly acting as a nutrient scout. The higher growth rate is associated with a higher nuclear count and mitotic waves involving 2 to 6 nuclei in the apical compartment. Further, we found that dormant nuclei of intercalary compartments can reenter the mitotic cycle, resulting in multinucleate compartments with up to 18 nuclei in a single compartment.


Subject(s)
Cell Nucleus/physiology , Fusarium/cytology , Hyphae/cytology , Fusarium/growth & development , Fusarium/physiology , Hyphae/growth & development , Mitosis
12.
Food Microbiol ; 45(Pt A): 63-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25481063

ABSTRACT

Tea is one of the most widely consumed beverages in the world and known for its antimicrobial activity against many microorganisms. Preliminary studies have shown that tea polyphenols can inhibit the growth of a wide range of Gram-positive bacteria. However, the effect of these compounds on germination and outgrowth of bacterial spores is unclear. Spore-forming bacteria are an aggravating problem for the food industry due to spore formation and their subsequent returning to vegetative state during food storage, thus posing spoilage and food safety challenges. Here we analysed the effect of tea compounds: gallic acid, gallocatechin gallate, Teavigo (>90% epigallocatechin gallate), and theaflavin 3,3'-digallate on spore germination and outgrowth and subsequent growth of vegetative cells of Bacillus subtilis. To quantitatively analyse the effect of these compounds, live cell images were tracked from single phase-bright spores up to microcolony formation and analysed with the automated image analysis tool "SporeTracker". In general, the tested compounds had a significant effect on most stages of germination and outgrowth. However, germination efficiency (ability of spores to become phase-dark) was not affected. Gallic acid most strongly reduced the ability to grow out. Additionally, all compounds, in particular theaflavin 3,3'-digallate, clearly affected the growth of emerging vegetative cells.


Subject(s)
Bacillus subtilis/drug effects , Biflavonoids/pharmacology , Catechin/pharmacology , Gallic Acid/pharmacology , Tea/chemistry , Bacillus subtilis/cytology , Bacillus subtilis/growth & development , Polyphenols/pharmacology , Spores, Bacterial , Time Factors , Time-Lapse Imaging
13.
PLoS Comput Biol ; 10(10): e1003877, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25299688

ABSTRACT

Folding of the chromosomal fibre in interphase nuclei is an important element in the regulation of gene expression. For instance, physical contacts between promoters and enhancers are a key element in cell-type-specific transcription. We know remarkably little about the principles that control chromosome folding. Here we explore the view that intrachromosomal interactions, forming a complex pattern of loops, are a key element in chromosome folding. CTCF and cohesin are two abundant looping proteins of interphase chromosomes of higher eukaryotes. To investigate the role of looping in large-scale (supra Mb) folding of human chromosomes, we knocked down the gene that codes for CTCF and the one coding for Rad21, an essential subunit of cohesin. We measured the effect on chromosome folding using systematic 3D fluorescent in situ hybridization (FISH). Results show that chromatin becomes more compact after reducing the concentration of these two looping proteins. The molecular basis for this counter-intuitive behaviour is explored by polymer modelling usingy the Dynamic Loop model (Bohn M, Heermann DW (2010) Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS ONE 5: e12218.). We show that compaction can be explained by selectively decreasing the number of short-range loops, leaving long-range looping unchanged. In support of this model prediction it has recently been shown by others that CTCF and cohesin indeed are responsible primarily for short-range looping. Our results suggest that the local and the overall changes in of chromosome structure are controlled by a delicate balance between short-range and long-range loops, allowing easy switching between, for instance, open and more compact chromatin states.


Subject(s)
Chromatin/chemistry , Chromatin/metabolism , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Apoptosis , CCCTC-Binding Factor , Cell Cycle Proteins , Cells, Cultured , Chromatin/genetics , Chromosomal Proteins, Non-Histone , Computational Biology , Computer Simulation , DNA-Binding Proteins , Gene Knockdown Techniques , Humans , Nuclear Proteins/genetics , Phosphoproteins/genetics , Polymers , Repressor Proteins/genetics , Cohesins
14.
J Vis Exp ; (87)2014 May 04.
Article in English | MEDLINE | ID: mdl-24835130

ABSTRACT

Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light's intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy's theoretical resolution limit of 200 nm. Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the protocol, dendritic spines can be reconstructed in 3D from series of SIM image stacks using specialized software.


Subject(s)
Dendritic Spines/ultrastructure , Hippocampus/diagnostic imaging , Microscopy/methods , Neurons/ultrastructure , Animals , Imaging, Three-Dimensional/methods , Rats , Ultrasonography
15.
J Biol Chem ; 289(9): 5889-903, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24403084

ABSTRACT

The actin-binding protein filamin A (FLNa) regulates neuronal migration during development, yet its roles in the mature brain remain largely obscure. Here, we probed the effects of FLNa on the regulation of ion channels that influence neuronal properties. We focused on the HCN1 channels that conduct Ih, a hyperpolarization-activated current crucial for shaping intrinsic neuronal properties. Whereas regulation of HCN1 channels by FLNa has been observed in melanoma cell lines, its physiological relevance to neuronal function and the underlying cellular pathways that govern this regulation remain unknown. Using a combination of mutational, pharmacological, and imaging approaches, we find here that FLNa facilitates a selective and reversible dynamin-dependent internalization of HCN1 channels in HEK293 cells. This internalization is accompanied by a redistribution of HCN1 channels on the cell surface, by accumulation of the channels in endosomal compartments, and by reduced Ih density. In hippocampal neurons, expression of a truncated dominant-negative FLNa enhances the expression of native HCN1. Furthermore, acute abrogation of HCN1-FLNa interaction in neurons, with the use of decoy peptides that mimic the FLNa-binding domain of HCN1, abolishes the punctate distribution of HCN1 channels in neuronal cell bodies, augments endogenous Ih, and enhances the rebound-response ("voltage-sag") of the neuronal membrane to transient hyperpolarizing events. Together, these results support a major function of FLNa in modulating ion channel abundance and membrane trafficking in neurons, thereby shaping their biophysical properties and function.


Subject(s)
Dynamins/metabolism , Filamins/metabolism , Hippocampus/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Neurons/metabolism , Potassium Channels/metabolism , Animals , Dynamins/genetics , Filamins/genetics , Hippocampus/cytology , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Membrane Potentials/physiology , Mice , Neurons/cytology , Potassium Channels/genetics , Rats , Rats, Sprague-Dawley
16.
Biomed Opt Express ; 4(11): 2644-56, 2013.
Article in English | MEDLINE | ID: mdl-24298422

ABSTRACT

We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

17.
PLoS One ; 8(3): e58972, 2013.
Article in English | MEDLINE | ID: mdl-23536843

ABSTRACT

Spore-forming bacteria are a special problem for the food industry as some of them are able to survive preservation processes. Bacillus spp. spores can remain in a dormant, stress resistant state for a long period of time. Vegetative cells are formed by germination of spores followed by a more extended outgrowth phase. Spore germination and outgrowth progression are often very heterogeneous and therefore, predictions of microbial stability of food products are exceedingly difficult. Mechanistic details of the cause of this heterogeneity are necessary. In order to examine spore heterogeneity we made a novel closed air-containing chamber for live imaging. This chamber was used to analyze Bacillus subtilis spore germination, outgrowth, as well as subsequent vegetative growth. Typically, we examined around 90 starting spores/cells for ≥4 hours per experiment. Image analysis with the purposely built program "SporeTracker" allows for automated data processing from germination to outgrowth and vegetative doubling. In order to check the efficiency of the chamber, growth and division of B. subtilis vegetative cells were monitored. The observed generation times of vegetative cells were comparable to those obtained in well-aerated shake flask cultures. The influence of a heat stress of 85°C for 10 min on germination, outgrowth, and subsequent vegetative growth was investigated in detail. Compared to control samples fewer spores germinated (41.1% less) and fewer grew out (48.4% less) after the treatment. The heat treatment had a significant influence on the average time to the start of germination (increased) and the distribution and average of the duration of germination itself (increased). However, the distribution and the mean outgrowth time and the generation time of vegetative cells, emerging from untreated and thermally injured spores, were similar.


Subject(s)
Bacillus subtilis/physiology , Bacillus subtilis/cytology , Bacillus subtilis/growth & development , Culture Media , Hot Temperature , Spores, Bacterial , Stress, Physiological
18.
Hum Mol Genet ; 20(21): 4175-86, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21831885

ABSTRACT

The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the occurrence of intermittent, non-lethal ruptures of the nuclear envelope in dermal fibroblast cultures of patients with different mutations of lamin A/C. These ruptures, which were absent in normal fibroblasts, could be mimicked by selective knockdown as well as knockout of LMNA and were accompanied by the loss of cellular compartmentalization. This was demonstrated by the influx of cytoplasmic transcription factor RelA and regulatory protein Cyclin B1 into the nucleus, and efflux of nuclear transcription factor OCT1 and nuclear structures containing the promyelocytic leukemia (PML) tumour suppressor protein to the cytoplasm. While recovery of enhanced yellow fluorescent protein-tagged nuclear localization signal in the nucleus demonstrated restoration of nuclear membrane integrity, part of the mobile PML structures became permanently translocated to the cytoplasm. These satellite PML structures were devoid of the typical PML body components, such as DAXX, SP100 or SUMO1. Our data suggest that nuclear rupture and loss of compartmentalization may add to cellular dysfunction and disease development in various laminopathies.


Subject(s)
Cell Compartmentation , Lamins/metabolism , Nuclear Envelope/pathology , Animals , Bacterial Proteins/metabolism , Cell Division , Dextrans/metabolism , Gene Expression Regulation , Humans , Lamin Type A/metabolism , Luminescent Proteins/metabolism , Macromolecular Substances/metabolism , Mice , Molecular Weight , Nuclear Envelope/ultrastructure , Nuclear Localization Signals , Organic Cation Transporter 1/metabolism , Protein Transport
19.
BMC Biol ; 9: 32, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21619590

ABSTRACT

BACKGROUND: Gq is a heterotrimeric G protein that plays an important role in numerous physiological processes. To delineate the molecular mechanisms and kinetics of signalling through this protein, its activation should be measurable in single living cells. Recently, fluorescence resonance energy transfer (FRET) sensors have been developed for this purpose. RESULTS: In this paper, we describe the development of an improved FRET-based Gq activity sensor that consists of a yellow fluorescent protein (YFP)-tagged Gγ2 subunit and a Gαq subunit with an inserted monomeric Turquoise (mTurquoise), the best cyan fluorescent protein variant currently available. This sensor enabled us to determine, for the first time, the kon (2/s) of Gq activation. In addition, we found that the guanine nucleotide exchange factor p63RhoGEF has a profound effect on the number of Gq proteins that become active upon stimulation of endogenous histamine H1 receptors. The sensor was also used to measure ligand-independent activation of the histamine H1 receptor (H1R) upon addition of a hypotonic stimulus. CONCLUSIONS: Our observations reveal that the application of a truncated mTurquoise as donor and a YFP-tagged Gγ2 as acceptor in FRET-based Gq activity sensors substantially improves their dynamic range. This optimization enables the real-time single cell quantification of Gq signalling dynamics, the influence of accessory proteins and allows future drug screening applications by virtue of its sensitivity.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Luminescent Proteins/metabolism , Receptors, Histamine H1/metabolism , Animals , Cells, Cultured , Embryo, Mammalian/cytology , Fluorescence Resonance Energy Transfer/instrumentation , Humans , Mice
20.
Food Microbiol ; 28(4): 678-84, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21511127

ABSTRACT

The 'Omics' revolution has brought a wealth of new mechanistic insights in many fields of biology. It offers options to base predictions of microbial behaviour on mechanistic insight. As the cellular mechanisms involved often turn out to be highly intertwined it is crucial that model development aims at identifying the level of complexity that is relevant to work at. For the prediction of microbiologically stable foods insight in the behaviour of bacterial spore formers is crucial. Their chances of germination and likelihood of outgrowth are major food stability indicators, as well as the transition from outgrowth to first cell division and vegetative growth. Current available technology to assess these parameters in a time-resolved manner at the single spore level will be discussed. Tools to study molecular processes operative in heat induced damage will be highlighted.


Subject(s)
Bacillus subtilis/growth & development , Food Microbiology/methods , Models, Biological , Bacillus subtilis/ultrastructure , Hot Temperature , Microscopy, Phase-Contrast , Spores, Bacterial/growth & development , Spores, Bacterial/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...