Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 68(1): 88-97, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32418364

ABSTRACT

In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017-2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.


Subject(s)
Chickens , Disease Outbreaks/veterinary , Ducks , Influenza A virus/physiology , Influenza in Birds/epidemiology , Poultry Diseases/epidemiology , Animals , Influenza A Virus, H5N8 Subtype/physiology , Influenza A virus/classification , Influenza in Birds/virology , Netherlands/epidemiology , Poultry Diseases/virology
2.
Transbound Emerg Dis ; 68(1): 76-87, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32419342

ABSTRACT

Highly pathogenic (HP) avian influenza viruses (AIV) can spread globally through migratory birds and cause massive outbreaks in commercial poultry. AIV outbreaks have been associated with proximity to waterbodies, presence of waterfowl or wild bird cases near poultry farms. In this study, we compared densities of selected HPAI high-risk wild bird species around 7 locations (H farms) infected with HPAIV H5N8 in the Netherlands in 2016-2017 to densities around 21 non-infected reference farms. Nine reference farms were in low-lying water-rich areas (R-W) and 12 in higher non-water-rich areas (R-NW). Average monthly numbers/km2 of Eurasian wigeons, tufted ducks, Anatidae (ducks, geese and swans) and Laridae (gulls) were calculated between September and April in rings of 0-1, 1-3, 3-6 and 6-10 km around the farms. Linear mixed model analyses showed generally higher bird densities for H and R-W compared to R-NW farms between October and March. This was most striking for Eurasian wigeons, with in peak month December 105 (95% CI:17-642) and 40 (7-214) times higher densities around H and R-W farms, respectively, compared to R-NW farms. Increased densities around H farms for Eurasian wigeons and Anatidae were more pronounced for distances up to 10 km compared to 0-1 km that mostly consists of the farm yard, which is an unattractive habitat for waterfowl. This distance effect was not observed in gulls, nor in tufted ducks that live on large open waterbodies which are unlikely to be within 0-1 km of farms. This study provides insights into spatio-temporal density dynamics of HPAI high-risk birds around farms and their associations with poultry outbreaks. The outcomes indicate that knowledge of environmental and ecological drivers for wild bird presence and abundance may facilitate identification of priority areas for surveillance and biosecurity measures and decisions on establishments of poultry farms to reduce risk of HPAI outbreaks.


Subject(s)
Animals, Wild/physiology , Anseriformes/physiology , Charadriiformes/physiology , Disease Outbreaks/veterinary , Farms , Influenza A Virus, H5N8 Subtype/physiology , Influenza in Birds/epidemiology , Animals , Influenza in Birds/virology , Netherlands/epidemiology , Population Density , Poultry , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL