Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Hum Brain Mapp ; 43(3): 1011-1031, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34738280

ABSTRACT

The present fMRI study aimed at highlighting patterns of brain activations and autonomic activity when confronted with high mental workload and the threat of auditory stressors. Twenty participants performed a complex cognitive task in either safe or aversive conditions. Our results showed that increased mental workload induced recruitment of the lateral frontoparietal executive control network (ECN), along with disengagement of medial prefrontal and posterior cingulate regions of the default mode network (DMN). Mental workload also elicited an increase in heart rate and pupil diameter. Task performance did not decrease under the threat of stressors, most likely due to efficient inhibition of auditory regions, as reflected by a large decrement of activity in the superior temporal gyri. The threat of stressors was also accompanied with deactivations of limbic regions of the salience network (SN), possibly reflecting emotional regulation mechanisms through control from dorsal medial prefrontal and parietal regions, as indicated by functional connectivity analyses. Meanwhile, the threat of stressors induced enhanced ECN activity, likely for improved attentional and cognitive processes toward the task, as suggested by increased lateral prefrontal and parietal activations. These fMRI results suggest that measuring the balance between ECN, SN, and DMN recruitment could be used for objective mental state assessment. In this sense, an extra recruitment of task-related regions and a high ratio of lateral versus medial prefrontal activity may represent a relevant marker of increased but efficient mental effort, while the opposite may indicate a disengagement from the task due to mental overload and/or stressors.


Subject(s)
Autonomic Nervous System/physiopathology , Cerebral Cortex/physiopathology , Connectome , Default Mode Network/physiopathology , Emotional Regulation/physiology , Executive Function/physiology , Nerve Net/physiopathology , Psychomotor Performance/physiology , Stress, Psychological/physiopathology , Adult , Cerebral Cortex/diagnostic imaging , Default Mode Network/diagnostic imaging , Female , Heart Rate/physiology , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Pupil/physiology , Young Adult
2.
Int J Psychophysiol ; 146: 139-147, 2019 12.
Article in English | MEDLINE | ID: mdl-31639382

ABSTRACT

The ability to identify reliable and sensitive physiological signatures of psychological dimensions is key to developing intelligent adaptive systems that may in turn help to mitigate human error in complex operations. The challenge of this endeavor lies with diagnosticity. Despite different underlying causes, the physiological correlates of workload and acute psychological stress manifest in rather similar ways and can be easily confounded. The current work aimed to build a diagnostic model of mental state through the simultaneous classification of mental workload (varied through three levels of the n-back task) and acute stress (the presence/absence of aversive sounds) with machine learning. Using functional near infrared spectroscopy (fNIRS) and electrocardiography (ECG), the model's classifiers was above-chance to disentangle variations of mental workload from variations of acute stress. Both ECG and fNIRS could predict mental workload level, the best accuracy resulted from the two measures in combination. Stress level could not be accurately diagnosed through ECG alone, only with fNIRS or ECG and fNIRS combined. Individual calibration may be important since stress classification was more accurate for those with higher subjective state anxiety, perhaps due to a greater sensitivity to stress. Mental workload and stress were both better classified with activity in lateral prefrontal regions of the cortex than the medial areas, and the HbO2 signal generally lead to better classification than HHB. The current model represents a step forward to finely discriminate different mental states despite their rather analog physiological correlates.


Subject(s)
Anxiety , Electrocardiography , Executive Function/physiology , Machine Learning , Memory, Short-Term/physiology , Prefrontal Cortex , Psychomotor Performance/physiology , Spectroscopy, Near-Infrared , Stress, Psychological , Adult , Anxiety/diagnosis , Anxiety/physiopathology , Female , Humans , Male , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Stress, Psychological/diagnosis , Stress, Psychological/physiopathology , Young Adult
3.
Biol Psychol ; 121(Pt A): 62-73, 2016 12.
Article in English | MEDLINE | ID: mdl-27725244

ABSTRACT

In our anxiogenic and stressful world, the maintenance of an optimal cognitive performance is a constant challenge. It is particularly true in complex working environments (e.g. flight deck, air traffic control tower), where individuals have sometimes to cope with a high mental workload and stressful situations. Several models (i.e. processing efficiency theory, cognitive-energetical framework) have attempted to provide a conceptual basis on how human performance is modulated by high workload and stress/anxiety. These models predict that stress can reduce human cognitive efficiency, even in the absence of a visible impact on the task performance. Performance may be protected under stress thanks to compensatory effort, but only at the expense of a cognitive cost. Yet, the psychophysiological cost of this regulation remains unclear. We designed two experiments involving pupil diameter, cardiovascular and prefrontal oxygenation measurements. Participants performed the Toulouse N-back Task that intensively engaged both working memory and mental calculation processes under the threat (or not) of unpredictable aversive sounds. The results revealed that higher task difficulty (higher n level) degraded the performance and induced an increased tonic pupil diameter, heart rate and activity in the lateral prefrontal cortex, and a decreased phasic pupil response and heart rate variability. Importantly, the condition of stress did not impact the performance, but at the expense of a psychophysiological cost as demonstrated by lower phasic pupil response, and greater heart rate and prefrontal activity. Prefrontal cortex seems to be a central region for mitigating the influence of stress because it subserves crucial functions (e.g. inhibition, working memory) that can promote the engagement of coping strategies. Overall, findings confirmed the psychophysiological cost of both mental effort and stress. Stress likely triggered increased motivation and the recruitment of additional cognitive resources that minimize its aversive effects on task performance (effectiveness), but these compensatory efforts consumed resources that caused a loss of cognitive efficiency (ratio between performance effectiveness and mental effort).


Subject(s)
Acoustic Stimulation/adverse effects , Adaptation, Psychological/physiology , Stress, Psychological/physiopathology , Task Performance and Analysis , Workload/psychology , Adult , Anxiety/physiopathology , Female , Healthy Volunteers , Heart Rate/physiology , Humans , Male , Memory, Short-Term/physiology , Mental Processes/physiology , Prefrontal Cortex/physiopathology , Psychophysiology , Young Adult
5.
Front Aging Neurosci ; 6: 272, 2014.
Article in English | MEDLINE | ID: mdl-25339900

ABSTRACT

Cardiorespiratory fitness has been shown to protect and enhance cognitive and brain functions, but little is known about the cortical mechanisms that underlie these changes in older adults. In this study, functional near infrared spectroscopy (fNIRS) was used to investigate variations in oxyhemoglobin [HbO2] and in deoxyhemoglobin [HHb] in the dorsolateral prefrontal cortex (DLPFC) during the performance of an executive control task in older women with different levels of cardiorespiratory fitness (VO2max). Thirty-four women aged 60-77 years were classified as high-fit and low-fit based on VO2max measures. They all performed a control counting (CNT) task and the Random Number Generation (RNG) task at two different paces (1 number/1 s and 1 number/1.5 s), allowing to manipulate task difficulty, while hemodynamic responses in the bilateral DLPFCs were recorded using continuous-wave NIRS. The behavioral data revealed that the high-fit women showed significantly better performance on the RNG tasks compared with the low-fit women. The high-fit women showed significant increases in [HbO2] responses in both left and right DLPFCs during the RNG task, while the low-fit women showed significantly less activation in the right DLPFC compared with the right DLPFC of the high-fit women and compared with their own left DLPFC. At the level of the whole sample, increases in the [HbO2] responses in the right DLPFC were found to mediate in part the relationship between VO2max level and executive performance during the RNG task at 1.5 s but not at 1 s. These results provide support for the cardiorespiratory fitness hypothesis and suggest that higher levels of aerobic fitness in older women are related to increased cerebral oxygen supply to the DLPFC, sustaining better cognitive performance.

7.
Neurosci Res ; 76(3): 156-62, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23665138

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) is suitable for investigating cerebral oxygenation changes during motor and/or mental tasks. In the present study, we investigated how an additional mental load during a motor task at two submaximal loadings affects the fNIRS-measured brain activation over the right prefrontal cortex (PFC). Fifteen healthy males performed isometric grasping contractions at 15% and 30% of the maximal voluntary contraction (MVC) with or without an additional mental (i.e., arithmetic) task. Mental performance, force variability, fNIRS and subjective perception responses were measured in each condition. The performance of the mental task decreased significantly while the force variability increased significantly at 30% MVC as compared to 15% MVC, suggesting that performance of dual-task required more attentional resources. PFC activity increased significantly as the effort increased from 15% to 30% MVC (p<.001). Although a larger change in the deoxyhemoglobin was observed in dual-task conditions (p=.051), PFC activity did not change significantly as compared to the motor tasks alone. In summary, participants were unable to invest more attention and effort in performing the more difficult levels in order to maintain adequate mental performance.


Subject(s)
Attention/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Adult , Brain Mapping/methods , Hand Strength , Humans , Male , Spectroscopy, Near-Infrared
8.
BMC Med ; 10: 171, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23259535

ABSTRACT

Physical activity, likely through induction of neuroplasticity, is a promising intervention to promote brain health. In athletes it is clear that training can and does, by physiological adaptations, extend the frontiers of performance capacity. The limits of our endurance capacity lie deeply in the human brain, determined by various personal factors yet to be explored. The human brain, with its vast neural connections and its potential for seemingly endless behaviors, constitutes one of the final frontiers of medicine. In a recent study published in BMC Medicine, the TransEurope FootRace Project followed 10 ultra-endurance runners over around 4,500 km across Europe and recorded a large data collection of brain imaging scans. This study indicates that the cerebral atrophy amounting to a reduction of approximately 6% throughout the two months of the race is reversed upon follow-up. While this study will contribute to advances in the limits of human performance on the neurophysiological processes in sports scientists, it will also bring important understanding to clinicians about cerebral atrophy in people who are vulnerable to physical and psychological stress long term.See related research article http://www.biomedcentral.com/1741-7015/10/170.


Subject(s)
Brain/anatomy & histology , Running , Female , Humans , Male
9.
Gait Posture ; 33(4): 686-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21454076

ABSTRACT

It has been shown that the ability of humans to maintain a quiet standing posture is degraded after fatigue of the muscles at the ankle. Yet, it has also been shown that skin stimulation at the ankle could improve postural performance. In the present study, we addressed the issue of the interaction of these two effects. Subjects were tested with the eyes closed in four conditions of quiet stance: with or without skin stimulation and before and after a fatigue protocol. The skin was stimulated with a piece of medical adhesive tape on the Achilles' tendon. The fatigue protocol consisted of multiple sets of ankle plantar flexion of both legs on stool. Without fatigue, we did not observe a significant effect of the tape. With fatigue, subjects decreased their postural performance significantly, but this effect was cancelled out when a piece of tape was glued on the Achilles' tendon. This indicated that the beneficial effect of the tape was unveiled by the degraded postural performance after fatigue. We conclude that, when the muscular sensory input flow normally relevant for the postural system is impaired due to fatigue, the weight of cutaneous information increases for the successful representation of movements in space to adjust postural control.


Subject(s)
Achilles Tendon , Muscle Fatigue/physiology , Postural Balance/physiology , Skin Physiological Phenomena , Female , Humans , Male , Muscle, Skeletal/physiology , Physical Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL