Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Plant Physiol ; 168(18): 2184-7, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21907444

ABSTRACT

Recent evidence indicates that winter-red leaf phenotypes in the mastic tree (Pistacia lentiscus) are more vulnerable to chronic photoinhibition during the cold season relative to winter-green phenotypes occurring in the same high light environment. This was judged by limitations in the maximum quantum yield of photosystem II (PSII), found in previous studies. In this investigation, we asked whether corresponding limitations in leaf gas exchange and carboxylation reactions could also be manifested. During the cold ("red") season, net CO2 assimilation rates (A) and stomatal conductances (g(s)) in the red phenotype were considerably lower than in the green phenotype, while leaf internal CO2 concentration (Ci) was higher. The differences were abolished in the "green" period of the year, the dry summer included. Analysis of A versus Ci curves indicated that CO2 assimilation during winter in the red phenotype was limited by Rubisco content and/or activity rather than stomatal conductance. Leaf nitrogen levels in the red phenotype were considerably lower during the red-leaf period. Consequently, we suggest that the inherently low leaf nitrogen levels are linked to the low net photosynthetic rates of the red plants through a decrease in Rubisco content. Accordingly, the reduced capacity of the carboxylation reactions to act as photosynthetic electron sinks may explain the corresponding loss of PSII photon trapping efficiency, which cannot be fully alleviated by the screening effect of the accumulated anthocyanins.


Subject(s)
Anthocyanins/metabolism , Carbon Dioxide/metabolism , Nitrogen/metabolism , Photosynthesis/physiology , Pistacia/metabolism , Plant Leaves/metabolism , Seasons , Nitrogen/deficiency , Ribulose-Bisphosphate Carboxylase/metabolism
2.
Funct Plant Biol ; 38(11): 848-855, 2011 Nov.
Article in English | MEDLINE | ID: mdl-32480942

ABSTRACT

Although it is widely documented that CO2 assimilation rates are positively correlated with leaf nitrogen, corresponding studies on a link between this nutrient and photosynthetic light reactions are scarce, especially under natural field conditions. In this investigation, we exploited natural variation in the nitrogen content of mature leaves of Pistacia lentiscus L. (mastic tree) in conjunction with fast chlorophyll a fluorescence rise (the OJIP curves) analysed according to the 'JIP test', as this was recently modified to allow for the assessment of events in or around PSI. The results depended on the sampling season, with low nitrogen leaves displaying lower efficiencies for electron flow from intermediate carriers to final PSI acceptors, and lower relative pool sizes of these acceptors, both during the autumn and winter. However, parameters related to the PSII) activity (i.e. quantum yields for photon trapping and electron flow along PSII and the efficiency of a trapped exciton to move an electron from the first plastoquoinone electron acceptor of PSII to intermediate carriers) were limited by low nitrogen only during the winter period. As a result, parameters like the quantum yield of total electron flow along both photosystems as well as the total photosynthetic performance index (PItotal) were positively correlated with leaf nitrogen independently of the season. We conclude that nitrogen deficiency under field conditions preferentially affects PSI activity while the effects on PSII are evident only during the stressful period of the year.

3.
Planta ; 232(2): 523-31, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20490542

ABSTRACT

A combination of gas exchange and various chlorophyll fluorescence measurements under varying O(2) and CO(2) partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO(2) assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.


Subject(s)
Cell Respiration/physiology , Electron Transport/physiology , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Leaves/physiology , Zantedeschia/metabolism , Zantedeschia/physiology , Carbon Dioxide/metabolism , Oxygen/metabolism , Photosystem I Protein Complex/metabolism
4.
Physiol Plant ; 139(3): 313-23, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20149129

ABSTRACT

Limited evidence up to now indicates low linear photosynthetic electron flow and CO(2) assimilation rates in non-foliar chloroplasts. In this investigation, we used chlorophyll fluorescence techniques to locate possible limiting steps in photosystem function in exposed, non-stressed green fruits (both pericarps and seeds) of three species, while corresponding leaves served as controls. Compared with leaves, fruit photosynthesis was characterized by less photon trapping and less quantum yields of electron flow, while the non-photochemical quenching was higher and potentially linked to enhanced carotenoid/chlorophyll ratios. Analysis of fast chlorophyll fluorescence rise curves revealed possible limitations both in the donor (oxygen evolving complex) and the acceptor (Q(A)(-)--> intermediate carriers) sides of photosystem II (PSII) indicating innately low PSII photochemical activity. On the other hand, PSI was characterized by faster reduction of its final electron acceptors and their small pool sizes. We argue that the fast reductive saturation of final PSI electron acceptors may divert electrons back to intermediate carriers facilitating a cyclic flow around PSI, while the partial inactivation of linear flow precludes strong reduction of plastoquinone. As such, the photosynthetic attributes of fruit chloroplasts may act to replenish the ATP lost because of hypoxia usually encountered in sink organs with high diffusive resistance to gas exchange.


Subject(s)
Chlorophyll/chemistry , Fruit/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Fluorescence , Magnoliopsida/metabolism , Photosystem I Protein Complex/metabolism , Plant Leaves/metabolism
5.
J Exp Bot ; 60(11): 3031-42, 2009.
Article in English | MEDLINE | ID: mdl-19420284

ABSTRACT

Under apparently similar field conditions individual plants of Cistus creticus turn transiently red during winter, while neighbouring plants remain green. These two phenotypes provide a suitable system for comparing basic photosynthetic parameters and assessing critically two hypotheses, i.e. anthocyanins afford photoprotection and anthocyanins induce shade characteristics on otherwise exposed leaves. With that aim, pigment levels and in vivo chlorophyll fluorescence parameters were monitored in dark-acclimated (JIP-test) and light-acclimated (saturation pulse method) leaves during both the green and the red period of the year. No evidence for actual photoprotection by anthocyanins was obtained. On the contrary, all fluorescence parameters related to yields and probabilities of photochemical energy conversion and electron flow, from initial light trapping to final reduction of ultimate electron acceptors in PSI, declined in the red phenotype after leaf reddening. Moreover, the pool sizes of final electron acceptors of PSII diminished, indicating that both photosystems were negatively affected. Vulnerability to winter stress was also indicated by sustained chlorophyll loss, inability to increase the levels of photoprotective xanthophylls and increased quantum yield of non-regulated energy loss during reddening. However, during the same period, the relative PSII antenna size increased, indicating an apparent shade acclimation after anthocyanin accumulation, while changes in the photosynthetic pigment ratios were also compatible to the shade acclimation hypothesis. All parameters recovered to pre-reddening values upon re-greening. It is concluded that the photosynthetic machinery of the red leaf phenotype has an inherently low capacity for winter stress tolerance, which is not alleviated by anthocyanin accumulation.


Subject(s)
Anthocyanins/metabolism , Cistus/physiology , Photosynthesis , Chlorophyll/metabolism , Plant Leaves/physiology , Seasons , Stress, Physiological , Xanthophylls/metabolism
6.
Trends Ecol Evol ; 24(3): 166-73, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19178979

ABSTRACT

Leaf colour change is commonly observed in temperate deciduous forests in autumn. This is not simply a side effect of leaf senescence, and, in the past decade, several hypotheses have emerged to explain the evolution of autumn colours. Yet a lack of crosstalk between plant physiologists and evolutionary ecologists has resulted in slow progress, and so the adaptive value of this colour change remains a mystery. Here we provide an interdisciplinary summary of the current body of knowledge on autumn colours, and discuss unresolved issues and future avenues of research that might help reveal the evolutionary meaning of this spectacle of nature.


Subject(s)
Adaptation, Biological , Biological Evolution , Color , Seasons , Trees/physiology , Animals , Color Perception , Compound Eye, Arthropod/physiology , Insecta/physiology , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Plant Leaves/physiology , Trees/anatomy & histology , Trees/metabolism
7.
J Plant Physiol ; 165(9): 952-9, 2008 Jun 16.
Article in English | MEDLINE | ID: mdl-17923168

ABSTRACT

Leaf color in some individuals of Cistus creticus turns transiently to red during winter, while neighboring individuals occupying the same site remain green. We have examined whether anthocyanin accumulation can be associated with variations in photosynthetic and/or photoprotective characteristics between the two phenotypes, rendering the red phenotype more vulnerable to photoinhibition and, accordingly, needing additional protection in the form of anthocyanins. Towards this aim, maximum (pre-dawn) and effective (mid-day) PSII photochemical efficiencies, xanthophyll cycle pool sizes and leaf nitrogen contents were seasonably followed, encompassing both the green (spring, summer, autumn) and the red (winter) period of the year. Moreover, the distribution of the two phenotypes in exposed and shaded sites was assessed. The frequency of red individuals was considerably higher in fully exposed sites, pointing to a photoprotective function of leaf anthocyanins. Yet, the assumption was not corroborated by pre-dawn PSII yield measurements, since both phenotypes displayed similar high values throughout the year and a similar drop during winter. However, the red phenotype was characterized by lower light-saturated PSII yields, xanthophyll cycle pool sizes and leaf nitrogen, during both the green and the red period of the year. Based on this correlative evidence, we suggest that winter redness in C. creticus may compensate for an inherent photosynthetic and photoprotective inferiority, possibly through a light screen and/or an antioxidant function of leaf anthocyanins.


Subject(s)
Anthocyanins/metabolism , Cistus/metabolism , Light , Photosynthesis/radiation effects , Pigmentation/radiation effects , Plant Leaves/metabolism , Seasons , Biomass , Cistus/radiation effects , Nitrogen/metabolism , Phenotype , Photosystem II Protein Complex/metabolism , Plant Leaves/radiation effects , Species Specificity , Xanthophylls/metabolism
8.
J Plant Physiol ; 164(10): 1331-6, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17074411

ABSTRACT

The "saturating pulse" method of in vivo Chl fluorescence measurement has been widely used by physiologists and especially ecophysiologists, as it allows a simple, rapid and non-invasive assessment of PSII function and the allocation of absorbed energy into photochemical and non-photochemical processes. It is based on the accurate determination of the so-called Fm('), i.e. the fluorescence signal emitted when a "saturating" light pulse closes all PSII centers. In this methodological investigation, we examined whether the saturating pulse intensities required to obtain maximal fluorescence yields differ between leaves of various species receiving varying actinic light irradiances. It was shown that, in leaves adapted to comparatively high (yet realistic) levels of natural irradiances, the saturating pulses usually applied are not able to close all PSII reaction centers. As a result, there is a high risk of considerable Fm(') underestimation. Accordingly, the derived values of effective PSII yields and linear electron transport rates (ETR) are also underestimated, even at the highest saturation pulse levels afforded by commercial instruments. Since the extent of underestimation increases with actinic irradiance, the ETR versus light curves are considerably distorted. The possible reasons for the apparent inability of "saturating" pulses to close all PSII centers at high actinic light and the practical implications, especially in field work, are discussed.


Subject(s)
Euphorbia/metabolism , Light , Melissa/metabolism , Nerium/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/radiation effects , Adaptation, Physiological , Chlorophyll/metabolism , Euphorbia/radiation effects , Melissa/radiation effects , Nerium/radiation effects , Plant Leaves/metabolism
9.
J Exp Bot ; 57(10): 2203-10, 2006.
Article in English | MEDLINE | ID: mdl-16714309

ABSTRACT

The hypothesis that anthocyanins in red leaves may be potential in vivo antioxidants whose efficiency is linked to their proximity with the oxy-radical source was tested. Advantage was taken of intra-individual and intra-species variations in the anthocyanic trait and green and red leaves on the same individuals or leaves of green and red phenotypes were compared for the extent of PSII damage by reactive oxygen species generated by methyl viologen treatment in the light. Two species possessing anthocyanins in the mesophyll (Cistus creticus and Photinia x fraseri) and two in the epidermis (Rosa sp. and Ricinus communis) were used, while red actinic light (which is not absorbed by anthocyanins) allowed discrimination between an indirect sunscreen and a direct antioxidant function. Red leaves whose anthocyanins were located in the mesophyll were more resistant to methyl viologen treatment than their green counterparts. In one of these species (Cistus creticus), where anthocyanins are induced in some individuals within the natural population after bright cool days in winter, both green and future-red morphs displayed the same sensitivity to methyl viologen before anthocyanin induction. Immediately after reddening, however, resistance to methyl viologen was considerably increased in the red morphs. By contrast, red leaves whose anthocyanins were restricted to epidermal cells were more sensitive to the herbicide. Total leaf phenolic levels in green/red pairs were similar. The results indicate that vacuolar anthocyanins may be an effective in vivo target for oxy-radicals, provided that the oxy-radical source and the anthocyanic detoxifying sink are in close vicinity.


Subject(s)
Anthocyanins/physiology , Antioxidants/physiology , Plant Epidermis/physiology , Plant Leaves/physiology , Plants/metabolism , Cistus/metabolism , Light , Paraquat , Photinia/metabolism , Photosystem II Protein Complex/metabolism , Ricinus/metabolism , Rosa/metabolism
10.
Ann Bot ; 98(1): 257-65, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16704996

ABSTRACT

BACKGROUND AND AIMS: Depending on cultivar, surfaces of young leaves of Vitis vinifera may be glabrous-green ('Soultanina') or transiently have anthocyanins ('Siriki') or pubescence ('Athiri'). A test is made of the hypothesis that anthocyanins and pubescence act as light screens affording a photoprotective advantage to the corresponding leaves, and an assessment is made of the magnitude of their effect. METHODS: Measurements were made on young leaves of the three cultivars in spring under field conditions. Photosynthetic gas-exchange and in vivo chlorophyll fluorescence were measured. Photosynthetic and photoprotective pigments were analysed by HPLC. KEY RESULTS: Compared with glabrous-green leaves, both anthocyanic and pubescent leaves had greater dark-adapted PSII photochemical efficiency and net photosynthesis. In leaves possessing either anthocyanins or pubescence, the ratio of xanthophyll cycle components to total chlorophyll, and mid-day de-epoxidation state of the xanthophyll cycle were considerably smaller, than in glabrous-green leaves. These differences were more evident in pubescent leaves, probably indicating that trichomes were more effective in decreasing light stress than anthocyanins in the epidermis. CONCLUSIONS: Light screens, especially in the form of pubescence, decrease the risk of photoinhibition whilst allowing leaves to maintain a smaller content of xanthophyll cycle components and depend less on xanthophyll cycle energy dissipation. This combination of photoprotective features, i.e. decreased photon flux to the photosynthetic apparatus and lower xanthophyll cycle utilization rates may be particularly advantageous under stressful conditions.


Subject(s)
Anthocyanins/physiology , Light , Plant Leaves/growth & development , Vitis/growth & development , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Chlorophyll/physiology , Chromatography, High Pressure Liquid , Fluorescence , Photosynthesis/physiology , Plant Epidermis/growth & development , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Vitis/anatomy & histology , Vitis/metabolism
11.
Tree Physiol ; 26(5): 613-21, 2006 May.
Article in English | MEDLINE | ID: mdl-16452075

ABSTRACT

Young leaves of many plants are transiently red because of the accumulation of anthocyanins, with the redness disappearing as leaves mature. Among the many hypothetical functions of foliar anthocyanins, two are tested in this field study: the sunscreen photoprotective function against excess visible light and the handicap signal against herbivory. We took advantage of intraspecies variation in anthocyanin concentrations of young leaves of Quercus coccifera L. to compare in vivo chlorophyll fluorescence parameters, reflectance spectra, total phenolics and the extent of herbivory of leaves of red- and green-leaved phenotypes occupying the same habitat. Photosystem II (PSII) photochemical efficiencies obtained at various photon fluence rates of red light were similar in green and red leaves. In white light, PSII efficiencies were slightly higher in red leaves than in green leaves, indicating a slight photoprotective role of anthocyanins in the field. However, compared with red phenotypes, green phenotypes suffered greater herbivore damage, as judged by the number of leaves attacked and the area lost to herbivory. In addition, there was a positive correlation between the concentrations of anthocyanins and total phenolics. We suggest that the importance of a photoprotective anthocyanic screen is low in thin, young leaves with low chlorophyll concentrations because the green light attenuated by anthocyanins is less significant for chlorophyll excitation. However, the decreased reflectance in the green spectral band and the concomitant leveling of reflectance throughout the 400-570 nm spectral range may either make red leaves less discernible to some insect herbivores or make insect herbivores more discernible to predators, or both. Moreover, excessive herbivory may be additionally discouraged by the high phenolic concentrations in red leaves.


Subject(s)
Anthocyanins/metabolism , Plant Leaves/metabolism , Quercus/metabolism , Animals , Chlorophyll/metabolism , Electron Transport/physiology , Insecta/physiology , Light , Photosynthesis/physiology , Photosynthesis/radiation effects , Quercus/parasitology , Quercus/physiology , Regression Analysis
12.
New Phytol ; 165(2): 463-72, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15720657

ABSTRACT

Reflectance indices are frequently used for the nondestructive assessment of leaf chemistry, especially pigment content, in environmental or developmental studies. Since reflectance spectra are influenced by trichome density, and trichome density displays a considerable phenotypic plasticity, we asked whether this structural parameter could be a source of variation in the values of the most commonly used indices. Trichome density was manipulated in detached leaves of three species having either peltate (Olea europaea and Elaeagnus angustifolius) or tubular (Populus alba) trichomes by successive removal of hairs. After each dehairing step, trichome density was determined by light or scanning electron microscopy and reflectance spectra were obtained with a diode-array spectrometer. Although species-specific differences were evident, most of the indices were considerably affected even at low trichome densities. In general, the less-affected indices were those using wavebands within the visible spectral region. The index that could be safely used even at very high hair densities in all species was the red edge index (lambda(RE)) for chlorophyll. The results indicate that changes in reflectance indices should be interpreted cautiously when concurrent changes in trichome density are suspected. In this case, the red edge for chlorophyll content may be the index of choice.


Subject(s)
Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Spectrum Analysis/methods , Elaeagnaceae/anatomy & histology , Olea/anatomy & histology , Plant Leaves/physiology , Populus/anatomy & histology , Species Specificity
13.
Physiol Plant ; 120(3): 509-517, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15032849

ABSTRACT

Twigs of many woody plants possess chlorenchyma under a well-developed periderm which lacks stomata and impedes both gas diffusion and light penetration. The so-called corticular photosynthesis, occurring in the shade and under extremely high CO(2) concentrations, was probed in this study through in vivo chlorophyll fluorescence measurements. Field comparisons between twigs and corresponding leaves in five species indicated that both the dark- and light-adapted PSII photochemical efficiencies are considerably lower in twigs at all incident photon fluence rates, in spite of the significant attenuation of solar radiation by the periderm. Light saturation curves for linear electron transport rates (corrected according to the actual light intensities reaching twig chlorenchyma) were compatible with a shade-acclimated photosynthetic machinery, showing very low maximum electron transport rates (at approximately 5% of the corresponding leaf values) and threshold irradiances for light saturation. However, removing periderms from twig segments (i.e. relieving the twig interior form the high CO(2) partial pressures) considerably improved the light-adapted (but not the dark-adapted) PSII photochemical efficiency, allowing the assumption that the high internal CO(2) levels may interfere with the smooth functioning of photosynthesis. Indeed, laboratory experiments with twig segments equilibrated under various CO(2) levels (0.036-20%), resulted in a progressive decrease of light-adapted PSII photochemical yield, with the values obtained at 20% CO(2) being similar to those obtained with intact twigs in the field. Further experiments indicated that high CO(2) combined with high light suppressed the development of a photoprotective non-photochemical quenching through a reduction of its fast relaxing component, accompanied by a higher risk of photoinhibition. It is suggested that high internal CO(2) concentrations in twigs impede photosynthesis possibly through acidification of protoplasm and impairment of the pH-dependent high energy state quenching followed by reduction in the efficiency of heat dissipation.

14.
Funct Plant Biol ; 30(3): 265-270, 2003 Mar.
Article in English | MEDLINE | ID: mdl-32689008

ABSTRACT

Young leaves in some plants are transiently red due to the presence of anthocyanins, which disappear upon maturation. We investigated the hypothesis that light attenuation by anthocyanins may lead to a shade acclimation of the photosynthetic machinery in red leaves. We took advantage of the intra-species variation in anthocyanin levels of young, exposed leaves of Quercus coccifera. Thus, photosynthetic and photoprotective characteristics were compared in young green and red leaves of the same age, sampled from the corresponding phenotypes occupying the same habitat. Red leaves displayed several shade attributes like thinner laminae, lower Chl a/b ratios and lower levels of the xanthophyll cycle components and ß-carotene. In addition, although both leaf kinds had the same area based levels of chlorophylls, these pigments were excluded from the sub-epidermic anthocyanic cell layers, leading to a further reduction of effective mesophyll thickness and an increase in chlorophyll density. Accordingly, red leaves had higher absolute chlorophyll fluorescence signals. In spite of these apparent shade characters, red leaves were less prone to photoinhibition under mild laboratory conditions and displayed slightly but significantly higher PS II photochemical efficiencies at pre-dawn in the field. No differences in all the above measured parameters were found in mature green leaves of the two phenotypes. The results confirm the light acclimation hypothesis and are also compatible with a photoprotective function of anthocyanins.

15.
New Phytol ; 154(2): 399-407, 2002 May.
Article in English | MEDLINE | ID: mdl-33873438

ABSTRACT

• We tested the hypothesis that unavoidably soft young leaves, which are therefore vulnerable to herbivory, should rely heavily on chemical defense to avoid overconsumption by herbivores. • Along with area lost to herbivores, parameters related to chemical and mechanical defense were monitored in two evergreen Mediterranean sclerophylls (Arbutus unedo and Arbutus andrachne) during spring and early summer, when newly growing and old leaves co-occur on the same branches. • During the lag phase of growth, young leaves were soft, rich in phenolics and gallotannins (up to 50% and 14% w/w, respectively) and highly astringent. During this period, the main consumer, a cricket (Poecilimon sp., Phaneropterinae) fed almost exclusively on the much tougher old leaves, which were low in phenolics (16%), gallotannins (6%) and astringency. During the rapid phase of leaf expansion, toughness increased and phenolics, gallotannins and astringency dropped to levels characteristic of old leaves. At that time, a shift in insect preferences towards young leaves was evident. Nitrogen content was independent of leaf age. • We conclude that leaf toughness is less important than chemical composition in the Arbutus-Poecilimon system, where gallotannins may play a decisive role.

SELECTION OF CITATIONS
SEARCH DETAIL
...