Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 13(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38392333

ABSTRACT

This study aims to explore the complex role of cannabinoid type 1 receptor (CB1) signaling in the gastrocnemius muscle, assessing physiological processes in both CB1+/+ and CB1-/- mice. The primary focus is to enhance our understanding of how CB1 contributes to mitochondrial homeostasis. At the tissue level, CB1-/- mice exhibit a substantial miRNA-related alteration in muscle fiber composition, characterized by an enrichment of oxidative fibers. CB1 absence induces a significant increase in the oxidative capacity of muscle, supported by elevated in-gel activity of Complex I and Complex IV of the mitochondrial respiratory chain. The increased oxidative capacity is associated with elevated oxidative stress and impaired antioxidant defense systems. Analysis of mitochondrial biogenesis markers indicates an enhanced capacity for new mitochondria production in CB1-/- mice, possibly adapting to altered muscle fiber composition. Changes in mitochondrial dynamics, mitophagy response, and unfolded protein response (UPR) pathways reveal a dynamic interplay in response to CB1 absence. The interconnected mitochondrial network, influenced by increased fusion and mitochondrial UPR components, underlines the dual role of CB1 in regulating both protein quality control and the generation of new mitochondria. These findings deepen our comprehension of the CB1 impact on muscle physiology, oxidative stress, and MQC processes, highlighting cellular adaptability to CB1-/-. This study paves the way for further exploration of intricate signaling cascades and cross-talk between cellular compartments in the context of CB1 and mitochondrial homeostasis.

2.
PLoS One ; 19(1): e0293644, 2024.
Article in English | MEDLINE | ID: mdl-38165955

ABSTRACT

Small non-coding RNAs (ncRNAs), particularly miRNAs, play key roles in a plethora of biological processes both in health and disease. Although largely operative in the cytoplasm, emerging data indicate their shuttling in different subcellular compartments. Given the central role of mitochondria in cellular homeostasis, here we systematically profiled their small ncRNAs content across mouse tissues that largely rely on mitochondria functioning. The ubiquitous presence of piRNAs in mitochondria (mitopiRNA) of somatic tissues is reported for the first time, supporting the idea of a strong and general connection between mitochondria biology and piRNA pathways. Then, we found groups of tissue-shared and tissue-specific mitochondrial miRNAs (mitomiRs), potentially related to the "basic" or "cell context dependent" biology of mitochondria. Overall, this large data platform will be useful to deepen the knowledge about small ncRNAs processing and their governed regulatory networks contributing to mitochondria functions.


Subject(s)
MicroRNAs , RNA, Small Untranslated , Animals , Mice , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Mitochondria/genetics , Mitochondria/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Cytoplasm/metabolism
3.
Int J Biol Sci ; 19(7): 2234-2255, 2023.
Article in English | MEDLINE | ID: mdl-37151878

ABSTRACT

In spermatozoa, the nuclear F-actin supports the acroplaxome, a subacrosomal structure involved in the correct exposure of several acrosomal membrane proteins; among them, the glycoprotein IZUMO1 is the major protein involved in sperm-oocyte fusion. Nuclear F-actin is also involved in sperm head shaping and chromosome compartmentalization. To date, few notions regarding the bivalent role of F-actin on sperm chromatin organization and IZUMO1 positioning have been reported. In our work, we characterized subcellular organization of F-actin in human high- and low-quality spermatozoa (A- and B-SPZ), respectively, showing that F-actin over-expression in sperm head of B-SPZ affected IZUMO1 localization. A correct IZUMO1 repositioning following in vitro induction of F-actin depolymerization, by cytochalasin D treatment, occurred. Interestingly, F-actin depolymerization was also associated with a correct acrosome repositioning, thus to favor a proper acrosome reaction onset, with changes in sperm nuclear size parameters and histone acetylation rate reaching high-quality conditions. In conclusion, the current work shows a key role of F-actin in the control of IZUMO1 localization as well as chromatin remodeling and acetylation events.


Subject(s)
Actins , Membrane Proteins , Male , Humans , Actins/metabolism , Cytochalasin D/pharmacology , Cytochalasin D/analysis , Cytochalasin D/metabolism , Membrane Proteins/metabolism , Semen/metabolism , Spermatozoa/metabolism , Immunoglobulins/metabolism
4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047838

ABSTRACT

Obesity is a pathophysiological disorder associated with adiposity accumulation, oxidative stress, and chronic inflammation state that is progressively increasing in younger population worldwide, negatively affecting male reproductive skills. An emerging topic in the field of male reproduction is circRNAs, covalently closed RNA molecules produced by backsplicing, actively involved in a successful spermatogenesis and in establishing high-quality sperm parameters. However, a direct correlation between obesity and impaired circRNA cargo in spermatozoa (SPZ) remains unclear. In the current work, using C57BL6/J male mice fed with a high-fat diet (HFD, 60% fat) as experimental model of oxidative stress, we investigated the impact of HFD on sperm morphology and motility as well as on spermatic circRNAs. We performed a complete dataset of spermatic circRNA content by a microarray strategy, and differentially expressed (DE)-circRNAs were identified. Using a circRNA/miRNA/target network (ceRNET) analysis, we identified circRNAs potentially involved in oxidative stress and sperm motility pathways. Interestingly, we demonstrated an enhanced skill of HFD sperm in backsplicing activity together with an inefficient epididymal circRNA biogenesis. Fused protein in sarcoma (FUS) and its ability to recruit quaking (QKI) could be involved in orchestrating such mechanism.


Subject(s)
Epididymis , RNA, Circular , Male , Animals , Mice , RNA, Circular/genetics , RNA, Circular/metabolism , Semen , Sperm Motility/genetics , Spermatozoa/metabolism , Obesity/genetics , Obesity/complications
5.
Front Endocrinol (Lausanne) ; 14: 1290971, 2023.
Article in English | MEDLINE | ID: mdl-38169845

ABSTRACT

Obesity is a pathophysiological condition, dependent on body fat accumulation, that progressively induces systemic oxidative stress/inflammation leading to a set of associated clinical manifestations, including male infertility. CircRNAs, covalently closed RNA molecules, are key regulators of sperm quality. Recently, we have characterized a complete profile of high-fat diet (HFD) spermatic circRNA cargo, predicting paternal circRNA dependent networks (ceRNETs), potentially involved in sperm oxidative stress and motility anomalies. In the current work, using HFD C57BL6/J male mice, orally treated with a mix of bioactive molecules (vitamin C; vitamin B12; vitamin E; selenium-L-methionine; glutathione-GSH) for 4 weeks, a reversion of HFD phenotype was observed. In addition, the functional action of the proposed formulations on circRNA biogenesis was evaluated by assessing the endogenous spermatic FUS-dependent backsplicing machinery and related circRNA cargo. After that, spermatic viability and motility were also analyzed. Paternal ceRNETs, potentially involved in oxidative stress regulation and sperm motility defects, were identified and used to suggest that the beneficial action of the food supplements here conveniently formulated on sperm motility was likely due to the recovery of circRNA profile. Such a hypothesis was, then, verified by an in vitro assay.


Subject(s)
Antioxidants , RNA, Circular , Male , Mice , Animals , Antioxidants/pharmacology , RNA, Circular/genetics , Semen , Sperm Motility , Spermatozoa , Obesity/drug therapy
6.
Int J Biol Sci ; 18(13): 5136-5153, 2022.
Article in English | MEDLINE | ID: mdl-35982890

ABSTRACT

CircRNA cargo in spermatozoa (SPZ) participates in setting cell quality, in terms of morphology and motility. Cannabinoid receptor CB1 activity is correlated with a proper spermatogenesis and epididymal sperm maturation. Despite CB1 promotes endogenous skill to circularize mRNAs in SPZ, few notions are reported regarding the functional link between endocannabinoids and spermatic circRNA cargo. In CB1 knock-out male mice, we performed a complete dataset of spermatic circRNA content by microarray strategy. Differentially expressed (DE)-circRNAs, as a function of genotype, were identified. Within DE-circRNAs, we focused the attention on circLIMA1, as putative actin-cytoskeleton architecture regulator. The validation of circLIMA1 dependent-competitive endogenous RNA (ceRNA) network (ceRNET) in in vitro cell line confirmed its activity in the regulation of the cytoskeletal actin. Interestingly, a dynamic actin regulation in SPZ nuclei was found during their epididymal maturation. In this scenario, we showed for the first time an intriguing sperm nuclear actin remodeling, regulated via a ceRNET-independent pathway, consisting in the nuclear shuttling of circLIMA1-QKI interactome and downstream in Gelsolin regulation. In particular, the increased levels of circLIMA1 in CB1 knock-out SPZ, associated with an inefficient depolymerization of nuclear actin, specifically illustrate how endocannabinoids, by regulating circRNA cargo, may contribute to sperm morpho-cellular maturation.


Subject(s)
Actins , RNA, Circular , Actins/genetics , Actins/metabolism , Animals , Endocannabinoids/metabolism , Male , Mice , Semen/metabolism , Spermatozoa/metabolism
7.
Front Cell Dev Biol ; 10: 877270, 2022.
Article in English | MEDLINE | ID: mdl-35813201

ABSTRACT

Kisspeptins are involved in the regulation of hypothalamic-pituitary-gonadal axis, Leydig cell functions, and testosterone secretion, acting as endogenous ligands of the KISS1 receptor. ANKRD31 protein participates in male fertility, regulating meiotic progression, and epididymal sperm maturation. Here, we show that in Leydig cells, KISS1 receptor and ANKRD31 proteins physically interact; the formation of this protein complex is enhanced by Kisspeptin-10 that also modulates F-actin synthesis, favoring histone acetylation in chromatin and gene expression via the cytoskeletal-nucleoskeletal pathway. Kp/KISS1R system deregulation, expression impairment of cytoskeletal-nucleoskeletal mediators, Leydig gene targets, and the decreased testosterone secretion in Ankrd31 -/- testis strongly supported our hypothesis. Furthermore, cytochalasin D treatment subverted the gene expression induction dependent on Kisspeptin-10 action. In conclusion, the current work highlights a novel role for the Kisspeptin-10 in the induction of the cytoskeletal-nucleoskeletal route, downstream a physical interaction between KISS1 receptor and ANKRD31, with gene expression activation as final effect, in Leydig cells.

8.
Cell Mol Life Sci ; 79(1): 50, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34936029

ABSTRACT

Circular RNA (circRNA) biogenesis requires a backsplicing reaction, promoted by inverted repeats in cis-flanking sequences and trans factors, such as RNA-binding proteins (RBPs). Among these, FUS plays a key role. During spermatogenesis and sperm maturation along the epididymis such a molecular mechanism has been poorly explored. With this in mind, we chose circCNOT6L as a study case and wild-type (WT) as well as cannabinoid receptor type-1 knock-out (Cb1-/-) male mice as animal models to analyze backsplicing mechanisms. Our results suggest that spermatozoa (SPZ) have an endogenous skill to circularize mRNAs, choosing FUS as modulator of backsplicing and under CB1 stimulation. A physical interaction between FUS and CNOT6L as well as a cooperation among FUS, RNA Polymerase II (RNApol2) and Quaking (QKI) take place in SPZ. Finally, to gain insight into FUS involvement in circCNOT6L biogenesis, FUS expression was reduced through RNA interference approach. Paternal transmission of FUS and CNOT6L to oocytes during fertilization was then assessed by using murine unfertilized oocytes (NF), one-cell zygotes (F) and murine oocytes undergoing parthenogenetic activation (PA) to exclude a maternal contribution. The role of circCNOT6L as an active regulator of zygote transition toward the 2-cell-like state was suggested using the Embryonic Stem Cell (ESC) system. Intriguingly, human SPZ exactly mirror murine SPZ.


Subject(s)
RNA, Circular/metabolism , RNA-Binding Protein FUS/metabolism , Ribonucleases/genetics , Spermatozoa , Animals , Female , Humans , Male , Mice , Mice, Knockout , Oocytes , Spermatozoa/cytology , Spermatozoa/metabolism , Zygote/metabolism
9.
Front Cell Dev Biol ; 9: 741975, 2021.
Article in English | MEDLINE | ID: mdl-34820371

ABSTRACT

Ankyrin proteins (ANKRD) are key mediators linking membrane and sub-membranous cytoskeletal proteins. Recent findings have highlighted a new role of ANKRD31 during spermatogenesis, elucidating its involvement in meiotic recombination and male germ cell progression. Following testicular differentiation, spermatozoa (SPZ) enter into the epididymis, where they undergo several biochemical and enzymatic changes. The epididymal epithelium is characterized by cell-to-cell junctions that are able to form the blood-epididymal barrier (BEB). This intricate epithelial structure provides the optimal microenvironment needed for epididymal sperm maturation. To date, no notions have been reported regarding a putative role of ANKRD31 in correct BEB formation. In our work, we generated an Ankrd31 knockout male mouse model (Ankrd31-/- ) and characterized its reproductive phenotype. Ankrd31-/- mice were infertile and exhibited oligo-astheno-teratozoospermia (a low number of immotile SPZ with abnormal morphological features). In addition, a complete deregulation of BEB was found in Ankrd31-/- , due to cell-to-cell junction anomalies. In order to suggest that BEB deregulation may depend on Ankrd31 gene deletion, we showed the physical interaction among ANKRD31 and some epithelial junction proteins in wild-type (WT) epididymides. In conclusion, the current work shows a key role of ANKRD31 in the control of germ cell progression as well as sperm and epididymal integrity.

10.
Cells ; 10(8)2021 07 31.
Article in English | MEDLINE | ID: mdl-34440724

ABSTRACT

The etiology of human asthenozoospermia is multifactorial. The need to unveil molecular mechanisms underlying this state of infertility is, thus, impelling. Circular RNAs (circRNAs) are involved in microRNA (miRNA) inhibition by a sponge activity to protect mRNA targets. All together they form the competitive endogenous RNA network (ceRNET). Recently, we have identified differentially expressed circRNAs (DE-circRNAs) in normozoospermic and asthenozoospermic patients, associated with high-quality (A-spermatozoa) and low-quality (B-spermatozoa) sperm. Here, we carried out a differential analysis of CRISP2, CATSPER1 and PATE1 mRNA expression in good quality (A-spermatozoa) and low quality (B-spermatozoa) sperm fractions collected from both normozoospermic volunteers and asthenozoospermic patients. These sperm fractions are usually separated on the basis of morphology and motility parameters by a density gradient centrifugation. B-spermatozoa showed low levels of mRNAs. Thus, we identified the possible ceRNET responsible for regulating their expression by focusing on circTRIM2, circEPS15 and circRERE. With the idea that motility perturbations could be rooted in quantitative changes of transcripts in sperm, we evaluated circRNA and mRNA modulation in A-spermatozoa and B-spermatozoa after an oral amino acid supplementation known to improve sperm motility. The profiles of CRISP2, CATSPER1 and PATE1 proteins in the same fractions of sperm well matched with the transcript levels. Our data may strengthen the role of circRNAs in asthenozoospermia and shed light on the molecular pathways linked to sperm motility regulation.


Subject(s)
Asthenozoospermia/metabolism , Calcium Channels/metabolism , Cell Adhesion Molecules/metabolism , Membrane Proteins/metabolism , Semen/metabolism , Spermatozoa/metabolism , Adult , Amino Acids/administration & dosage , Asthenozoospermia/diagnosis , Asthenozoospermia/drug therapy , Asthenozoospermia/genetics , Calcium Channels/genetics , Case-Control Studies , Cell Adhesion Molecules/genetics , Dietary Supplements , Gene Expression Regulation, Developmental , Humans , Male , Membrane Proteins/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Sperm Motility , Spermatozoa/drug effects , Time Factors , Treatment Outcome , Young Adult
11.
Hum Mol Genet ; 30(16): 1509-1520, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34132339

ABSTRACT

The reciprocal parent of origin-specific expression of H19 and IGF2 is controlled by the H19/IGF2:IG-DMR (IC1), whose maternal allele is unmethylated and acts as a CTCF-dependent insulator. In humans, internal IC1 deletions are associated with Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS), depending on their parental origin. These genetic mutations result in aberrant DNA methylation, deregulation of IGF2/H19 and disease with incomplete penetrance. However, the mechanism linking the microdeletions to altered molecular and clinical phenotypes remains unclear. To address this issue, we have previously generated and characterized two knock-in mouse lines with the human wild-type (hIC1wt) or mutant (hIC1∆2.2) IC1 allele replacing the endogenous mouse IC1 (mIC1). Here, we report an additional knock-in line carrying a mutant hIC1 allele with an internal 1.8 kb deletion (hIC1∆1.8). The phenotype of these mice is different from that of the hIC1∆2.2-carrying mice, partially resembling hIC1wt animals. Indeed, proper H19 and Igf2 imprinting and normal growth phenotype were evident in the mice with maternal transmission of hIC1Δ1.8, while low DNA methylation and non-viable phenotype characterize its paternal transmission. In contrast to hIC1wt, E15.5 embryos that paternally inherit hIC1Δ1.8 displayed variegated hIC1 methylation. In addition, increased Igf2 expression, correlating with increased body weight, was found in one third of these mice. Chromatin immunoprecipitation experiments in mouse embryonic stem cells carrying the three different hIC1 alleles demonstrate that the number of CTCF target sites influences its binding to hIC1, indicating that in the mouse, CTCF binding is key to determining hIC1 methylation and Igf2 expression.


Subject(s)
Beckwith-Wiedemann Syndrome , RNA, Long Noncoding , Animals , Beckwith-Wiedemann Syndrome/genetics , Binding Sites , CCCTC-Binding Factor/genetics , DNA Methylation/genetics , Genomic Imprinting , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
12.
Int J Mol Sci ; 22(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802611

ABSTRACT

The objective of this work has been to characterize the estrogenic activity of bisphenol-A (BPA) and the adverse effects on the endocannabinoid system (ECS) in modulating germ cell progression. Male offspring exposed to BPA during the foetal-perinatal period at doses below the no-observed-adverse-effect-level were used to investigate the exposure effects in adulthood. Results showed that BPA accumulates specifically in epididymal fat rather than in abdominal fat and targets testicular expression of 3ß-hydroxysteroid dehydrogenase and cytochrome P450 aromatase, thus promoting sustained increase of estrogens and a decrease of testosterone. The exposure to BPA affects the expression levels of some ECS components, namely type-1 (CB1) and type-2 cannabinoid (CB2) receptor and monoacylglycerol-lipase (MAGL). Furthermore, it affects the temporal progression of germ cells reported to be responsive to ECS and promotes epithelial germ cell exfoliation. In particular, it increases the germ cell content (i.e., spermatogonia while reducing spermatocytes and spermatids), accelerates progression of spermatocytes and spermatids, promotes epithelial detachment of round and condensed spermatids and interferes with expression of cell-cell junction genes (i.e., zonula occcludens protein-1, vimentin and ß-catenin). Altogether, our study provides evidence that early exposure to BPA produces in adulthood sustained and site-specific BPA accumulation in epididymal fat, becoming a risk factor for the reproductive endocrine pathways associated to ECS.


Subject(s)
Adipose Tissue/drug effects , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/metabolism , Endocannabinoids/metabolism , Epididymis/drug effects , Estrogens/metabolism , Germ Cells/drug effects , Phenols/adverse effects , Phenols/metabolism , Adipose Tissue/metabolism , Animals , Endocrine System/drug effects , Endocrine System/metabolism , Epididymis/metabolism , Epithelium/drug effects , Epithelium/metabolism , Germ Cells/metabolism , Intercellular Junctions/drug effects , Intercellular Junctions/metabolism , Male , Mice , Risk Factors , Testosterone/metabolism
13.
Genes (Basel) ; 12(5)2021 04 27.
Article in English | MEDLINE | ID: mdl-33925685

ABSTRACT

Nuclear architecture undergoes an extensive remodeling during spermatogenesis, especially at levels of spermatocytes (SPC) and spermatids (SPT). Interestingly, typical events of spermiogenesis, such as nuclear elongation, acrosome biogenesis, and flagellum formation, need a functional cooperation between proteins of the nuclear envelope and acroplaxome/manchette structures. In addition, nuclear envelope plays a key role in chromosome distribution. In this scenario, special attention has been focused on the LINC (linker of nucleoskeleton and cytoskeleton) complex, a nuclear envelope-bridge structure involved in the connection of the nucleoskeleton to the cytoskeleton, governing mechanotransduction. It includes two integral proteins: KASH- and SUN-domain proteins, on the outer (ONM) and inner (INM) nuclear membrane, respectively. The LINC complex is involved in several functions fundamental to the correct development of sperm cells such as head formation and head to tail connection, and, therefore, it seems to be important in determining male fertility. This review provides a global overview of the main LINC complex components, with a special attention to their subcellular localization in sperm cells, their roles in the regulation of sperm morphological maturation, and, lastly, LINC complex alterations associated to male infertility.


Subject(s)
Cell Nucleus/physiology , Cytoskeleton/metabolism , Cytoskeleton/physiology , Nuclear Envelope/metabolism , Nuclear Matrix/metabolism , Spermatozoa/metabolism , Spermatozoa/physiology , Animals , Cell Nucleus/metabolism , Humans , Infertility, Male/metabolism , Infertility, Male/physiopathology , Male , Mechanotransduction, Cellular/physiology , Nuclear Matrix/physiology , Spermatids/metabolism , Spermatids/physiology , Spermatocytes/metabolism , Spermatocytes/physiology
14.
Front Cell Dev Biol ; 9: 740203, 2021.
Article in English | MEDLINE | ID: mdl-35096807

ABSTRACT

Maintenance of energy balance between intake and expenditure is a prerequisite of human health, disrupted in severe metabolic diseases, such as obesity and type 2 diabetes (T2D), mainly due to accumulation of white adipose tissue (WAT). WAT undergoes a morphological and energetic remodelling toward brown adipose tissue (BAT) and the BAT activation has anti-obesity potential. The mechanisms or the regulatory factors able to activate BAT thermogenesis have been only partially deciphered. Identifying novel regulators of BAT induction is a question of great importance for fighting obesity and T2D. Here, we evaluated the role of Hif3α in murine pre-adipocyte 3T3-L1 cell line, a versatile and well characterized biological model of adipogenesis, by gain- and loss-of function approaches and in thermogenesis-induced model in vivo. HIF3A is regulated by inflammation, it modulates lypolysis in adipose tissue of obese adults, but its role in energy metabolism has not previously been investigated. We characterized gene and protein expression patterns of adipogenesis and metabolic activity in vitro and mechanistically in vivo. Overexpression of Hif3α in differentiating adipocytes increases white fat cells, whereas silencing of Hif3α promotes "browning" of white cells, activating thermogenesis through upregulation of Ucp1, Elovl3, Prdm16, Dio2 and Ppargc1a genes. Investigating cell metabolism, Seahorse Real-Time Cell Metabolism Analysis showed that silencing of Hif3α resulted in a significant increase of mitochondrial uncoupling with a concomitant increase in acetyl-CoA metabolism and Sirt1 and Sirt3 expression. The causal Hif3α/Ucp1 inverse relation has been validated in Cannabinoid receptor 1 (CB1) knockout, a thermogenesis-induced model in vivo. Our data indicate that Hif3α inhibition triggers "browning" of white adipocytes activating the beneficial thermogenesis rewiring energy metabolism in vitro and in vivo. HIF3A is a novel player that controls the energy metabolism with potential applications in developing therapy to fight metabolic disorders, as obesity, T2D and ultimately cancer.

15.
Article in English | MEDLINE | ID: mdl-32754116

ABSTRACT

The role of circRNA in reproduction is under investigation. CircRNAs are expressed in human testis, spermatozoa (SPZ), and seminal plasma. Their involvement in embryo development has also been suggested. Asthenozoospermia, a common cause of male infertility, is characterized by reduced or absent sperm motility in fresh ejaculate. While abnormal mitochondrial function, altered sperm tail, and genomic causes have been deeply investigated, the epigenetic signature of asthenozoospermic derived SPZ still remains unexplored. CircRNAs may take part in the repertoire of differentially expressed molecules in infertile men. Considering this background, we carried out a circRNA microarray, identifying a total of 9,138 transcripts, 22% of them novel based and 83.5% with an exonic structure. Using KEGG analysis, we evaluated the circRNA contribution in pathways related to mitochondrial function and sperm motility. In order to discriminate circRNAs with a differential expression in SPZ with differential morphological parameters, we separated sperm cells by Percoll gradient and analyzed their differential circRNA payload. A bioinformatic approach was then utilized to build a circRNA/miRNA/mRNA network. With the aim to demonstrate a dynamic contribution of circRNAs to the sperm epigenetic signature, we verified their modulation as a consequence of an oral amino acid supplementation, efficacious in improving SPZ motility.


Subject(s)
Asthenozoospermia/metabolism , RNA, Circular/metabolism , Spermatozoa/metabolism , Adult , Asthenozoospermia/genetics , Computational Biology , Gene Expression , Humans , Male , Microarray Analysis , Sperm Motility
16.
Int J Mol Sci ; 21(9)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354121

ABSTRACT

The cannabinoid receptor CB1 regulates differentiation of spermatids. We recently characterized spermatozoa from caput epididymis of CB1-knock-out mice and identified a considerable number of sperm cells with chromatin abnormality such as elevated histone content and poorly condensed chromatin. In this paper, we extended our findings and studied the role of CB1 in the epididymal phase of chromatin condensation of spermatozoa by analysis of spermatozoa from caput and cauda epididymis of wild-type and CB1-knock-out mouse in both a homozygous or heterozygous condition. Furthermore, we studied the impact of CB1-gene deletion on histone displacement mechanism by taking into account the hyperacetylation of histone H4 and players of displacement such as Chromodomain Y Like protein (CDYL) and Bromodomain testis-specific protein (BRDT). Our results show that CB1, via local and/or endocrine cell-to-cell signaling, modulates chromatin remodeling mechanisms that orchestrate a nuclear condensation extent of mature spermatozoa. We show that CB1-gene deletion affects the epididymal phase of chromatin condensation by interfering with inter-/intra-protamine disulphide bridges formation, and deranges the efficiency of histone removal by reducing the hyper-acetylation of histone H4. This effect is independent by gene expression of Cdyl and Brdt mRNA. Our results reveal a novel and important role for CB1 in sperm chromatin condensation mechanisms.


Subject(s)
Chromatin/metabolism , Disulfides/metabolism , Epididymis/cytology , Receptor, Cannabinoid, CB1/genetics , Spermatozoa/physiology , Acetylation , Animals , Chromatin Assembly and Disassembly , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Epididymis/metabolism , Gene Deletion , Gene Expression Regulation , Gene Knockout Techniques , Histones/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Male , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Receptor, Cannabinoid, CB1/metabolism
17.
Int J Endocrinol ; 2020: 2750501, 2020.
Article in English | MEDLINE | ID: mdl-32256569

ABSTRACT

Bisphenol-A (BPA) is considered an endocrine disruptor with estrogenic activity. It is described as an environment-polluting industrial chemical whose adverse effects on the male reproductive system depend on the period of exposure (i.e., fetal, prepubertal, or adult life). We exposed male mice to BPA during the fetal-perinatal period (from 10 days post coitum to 31 days post partum) and investigated the impact of this early-life exposure on gamete health in adulthood animals at 78 days of age. Both in control and BPA-exposed mice, viability and motility of spermatozoa, as well as sperm motility acquisition and chromatin condensation of spermatozoa, have been evaluated. Results reveal harmful effect of BPA on viability and motility of sperm cells as well as on chromatin condensation status during epididymal maturation of spermatozoa. In particular, BPA exposure interferes with biochemical mechanism useful to stabilize sperm chromatin condensation, as it interferes with oxidation of thiol groups associated to chromatin.

18.
J Clin Med ; 9(3)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32121034

ABSTRACT

Spermatozoa (SPZ) are motile cells, characterized by a cargo of epigenetic information including histone post-translational modifications (histone PTMs) and non-coding RNAs. Specific histone PTMs are present in developing germ cells, with a key role in spermatogenic events such as self-renewal and commitment of spermatogonia (SPG), meiotic recombination, nuclear condensation in spermatids (SPT). Nuclear condensation is related to chromatin remodeling events and requires a massive histone-to-protamine exchange. After this event a small percentage of chromatin is condensed by histones and SPZ contain nucleoprotamines and a small fraction of nucleohistone chromatin carrying a landascape of histone PTMs. Circular RNAs (circRNAs), a new class of non-coding RNAs, characterized by a nonlinear back-spliced junction, able to play as microRNA (miRNA) sponges, protein scaffolds and translation templates, have been recently characterized in both human and mouse SPZ. Since their abundance in eukaryote tissues, it is challenging to deepen their biological function, especially in the field of reproduction. Here we review the critical role of histone PTMs in male germ cells and the profile of circRNAs in mouse and human SPZ. Furthermore, we discuss their suggested role as novel epigenetic biomarkers to assess sperm quality and improve artificial insemination procedure.

19.
Article in English | MEDLINE | ID: mdl-31338066

ABSTRACT

Circular RNAs (circRNAs) are expressed in human testis and seminal plasma. Until today, there is missing information about a possible payload of circRNAs in human spermatozoa (SPZ). With this in mind, we carried out a circRNA microarray identifying a total of 10.726 transcripts, 28% novel based and 84.6% with exonic structure; their potential contribution in molecular pathways was evaluated by KEGG analysis. Whether circRNAs may be related to SPZ quality was speculated evaluating two different populations of SPZ (A SPZ = good quality, B SPZ = low quality), separated on the basis of morphology and motility parameters, by Percoll gradient. Thus, 148 differentially expressed (DE)-circRNAs were identified and the expression of selected specific SPZ-derived circRNAs was evaluated in SPZ head/tail-enriched preparations, to check the preservation of these molecules during SPZ maturation and their transfer into oocyte during fertilization. Lastly, circRNA/miRNA/mRNA network was built by bioinformatics approach.

20.
RNA Biol ; 16(9): 1237-1248, 2019 09.
Article in English | MEDLINE | ID: mdl-31135264

ABSTRACT

Circular RNAs (circRNAs) have a critical role in the control of gene expression. Their function in spermatozoa (SPZ) is unknown to date. Twenty-eight genes, involved in SPZ/testicular and epididymal physiology, were given in circBase database to find which of them may generate circular transcripts. We focused on circNAPEPLDiso1, one of the circular RNA isoforms of NAPEPLD transcript, because expressed in human and murine SPZ. In order to functionally characterize circNAPEPLDiso1 as potential microRNA (miRNA) sponge, we performed circNAPEPLDiso1-miR-CATCH and then profiled the expression of 754 miRNAs, by using TaqMan® Low Density Arrays. Among them, miRNAs 146a-5p, 203a-3p, 302c-3p, 766-3p and 1260a (some of them previously shown to be expressed in the oocyte), resulted enriched in circNAPEPLDiso1-miR-CATCHed cell lysate: the network of interactions generated from their validated targets was centred on a core of genes involved in the control of cell cycle. Moreover, computational analysis of circNAPEPLDiso1 sequence also showed its potential translation in a short form of NAPEPLD protein. Interestingly, the expression analysis in murine-unfertilized oocytes revealed low and high levels of circNAPEPLDiso1 and circNAPEPLDiso2, respectively. After fertilization, circNAPEPLDiso1 expression significantly increased, instead circNAPEPLDiso2 expression appeared constant. Based on these data, we suggest that SPZ-derived circNAPEPLDiso1 physically interacts with miRNAs primarily involved in the control of cell cycle; we hypothesize that it may represent a paternal cytoplasmic contribution to the zygote and function as a miRNA decoy inside the fertilized oocytes to regulate the first stages of embryo development. This role is proposed here for the first time.


Subject(s)
Gene Expression Regulation , MicroRNAs/metabolism , Oocytes/metabolism , RNA, Circular/genetics , Spermatozoa/metabolism , Amino Acid Sequence , Animals , Computer Simulation , Eukaryotic Initiation Factor-4A/metabolism , HEK293 Cells , Humans , Male , Mice , MicroRNAs/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Zygote/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...