Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 44(4): 865-876, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36284209

ABSTRACT

Hernandezine (Her) is a bisbenzylisoquinoline alkaloid extracted from the traditional Chinese herbal medicine Thalictrum glandulosissimum. Evidence shows that Her is a natural agonist of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and induces apoptosis and autophagy in tumor cells. In this study, we investigated the role of autophagy in Her-induced cell death in human pancreatic cancer cell lines. We showed that Her dose-dependently suppressed cell proliferation, promoted autophagy and induced autophagic death in pancreatic ductal adenocarcinoma (PDAC) cell lines Capan-1 and SW1990. The IC50 values of Her in inhibition of Capan-1 and SW1990 cells were 47.7 µM and 40.1 µM, respectively. Immunoblotting showed that Her (1-40 µM) promoted the conversion of LC3-I to LC3-II, and Her exerted concentration-dependent and time-dependent effects on autophagy activation in PDAC cells. In transmission electron microscopy and fluorescence image analysis, we found that autophagic vacuoles were significantly increased in Her-treated cells. Knockdown of ATG5, a key gene in the autophagy pathway, alleviated the activation of autophagy by Her. These results demonstrated that Her induced autophagy in PDAC cells. Intensely activated autophagy could promote cell death. The autophagy inhibitors, BafA1 and HCQ significantly inhibited Her-induced cell death, implying that Her induced autophagic cell death in PDAC cells. Moreover, we showed that Her activated autophagy by increasing the phosphorylation of AMPK and decreasing the phosphorylation of mTOR/p70S6K. Knockdown of AMPKα relieves the autophagic cell death induced by Her. Furthermore, Her concentration-dependently enhanced reactive oxygen species (ROS) generation in PDAC cells. Antioxidants could reduce the phosphorylation of AMPK and suppress autophagic cell death induced by Her. Our study provides evidence for the development of Her as a therapeutic agent for the treatment of pancreatic cancer.


Subject(s)
Autophagic Cell Death , Benzylisoquinolines , Pancreatic Neoplasms , Female , Humans , AMP-Activated Protein Kinases/metabolism , Apoptosis , Autophagic Cell Death/drug effects , Autophagy , Benzylisoquinolines/pharmacology , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Reactive Oxygen Species/metabolism , Signal Transduction , Pancreatic Neoplasms
2.
Phytomedicine ; 105: 154366, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35933900

ABSTRACT

BACKGROUND: AMP-activated protein kinase (AMPK) is an effective target for treating diabetes. However, successful drug development is delayed due to issues including toxicity. Plant-derived natural product AMPK activators have emerged as a new way to treat diabetes due to its potential low safety risks. Here, we studied the effect of hernandezine (HER), a natural product derived from Thalictrum, in activating AMPK and treating T2D in mouse models. METHOD: We tested HER in various cells and tissues, including primary hepatocytes, skeletal myotubes cell lines, as well as major metabolic tissues from diabetic (db/db) and diet-induced obesity (DIO) model mice. The effect of HER on glucose uptake via AMPK in vitro and in vivo was confirmed utilizing cell transfection and adenovirus interference analysis. Tissue staining assessed the effect of HER on adipogenesis. Real-time quantitative polymerase chain reaction (real-time PCR) was applied to verify the effect of HER on transcription factors. Western blot analysis was used to determine the activation of phosphorylated AMPK and ACC pathways. RESULTS: Biochemically, we found that HER prevented pAMPK from dephosphorylation to prolong its activity, disproving previous direct activation model and providing a new model to explain HER-mediated AMPK activation. HER could be orally delivered to animals and has a 3-fold long half-life in vivo as compared to metformin. Importantly, long-term oral HER treatment potently reduced body weight and blood glucose in both type 2 diabetes mullitus (T2DM) mouse models by increasing glucose disposal and reducing lipogenesis, and appeared not to induce cardiac hypertrophy. CONCLUSION: Natural product HER indirectly activates AMPK by suppressing its dephosphorylation. Oral HER effectively alleviated hyperglycemia and reduced body weight in T2D mouse models, appeared to have a low risk of causing cardiac hypertrophy, and might be a potential therapeutic option for T2DM.


Subject(s)
Benzylisoquinolines , Biological Products , Diabetes Mellitus, Type 2 , AMP-Activated Protein Kinases , Animals , Body Weight , Cardiomegaly , Disease Models, Animal , Hypoglycemic Agents , Mice , Mice, Inbred C57BL , Mice, Obese
3.
Org Lett ; 22(20): 8127-8131, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33026812

ABSTRACT

We developed an approach for direct selective hydroxylation of heterobenzylic methylenes to secondary alcohols avoiding overoxidation to ketones by using a KOBu-t/DMSO/air system. Most reactions could reach completion in several minutes to give hydroxylated products in 41-76% yields. Using DMSO-d6, this protocol resulted in difunctionalization of heterobenzylic methylenes to afford α-deuterated secondary alcohols (>93% incorporation). By employing this method, active pharmaceutical ingredients carbinoxamine and doxylamine were synthesized in two steps in moderate yields.

4.
Chem Biodivers ; 17(9): e2000066, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32567792

ABSTRACT

Structural simplification and modification of natural products are always very important resources to antitumor drugs. By introducing various aminomethyl groups and amide groups into the phenanthrene ring of tylophorine, a novel series of tylophorine derivatives have been designed and synthesized, and their antiproliferative activities against MCF-7, A549 and HepG-2 cells have been evaluated, too. The results indicated that most of the prepared compounds exhibited good antitumor activities. Especially, one compound with an {ethyl[2-(morpholin-4-yl)ethyl]amino}methyl group at the side chain exhibited the most significant cytotoxic effects.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Drug Design , Indolizines/pharmacology , Phenanthrenes/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indolizines/chemical synthesis , Indolizines/chemistry , Molecular Structure , Phenanthrenes/chemical synthesis , Phenanthrenes/chemistry , Structure-Activity Relationship , Tylophora/chemistry
5.
Emerg Microbes Infect ; 8(1): 55-69, 2019.
Article in English | MEDLINE | ID: mdl-30866760

ABSTRACT

Accumulating evidence indicates that bacterial metabolism plays an important role in virulence. Acetyl phosphate (AcP), the high-energy intermediate of the phosphotransacetylase-acetate kinase pathway, is the major acetyl donor in E. coli. PhoP is an essential transcription factor for bacterial virulence. Here, we show in Salmonella typhimurium that PhoP is non-enzymatically acetylated by AcP, which modifies its transcriptional activity, demonstrating that the acetylation of Lysine 102 (K102) is dependent on the intracellular AcP. The acetylation level of K102 decreases under PhoP-activating conditions including low magnesium, acid stress or following phagocytosis. Notably, in vitro assays show that K102 acetylation affects PhoP phosphorylation and inhibits its transcriptional activity. Both cell and mouse models show that K102 is critical to Salmonella virulence, and suggest acetylation is involved in regulating PhoP activity. Together, the current study highlights the importance of the metabolism in bacterial virulence, and shows AcP might be a key mediator.


Subject(s)
Bacterial Proteins/metabolism , Lysine/metabolism , Organophosphates/metabolism , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/pathogenicity , Acetylation , Animals , Bacterial Proteins/chemistry , Female , Gene Expression Regulation, Bacterial , Magnesium/metabolism , Mice , Mice, Inbred BALB C , Phagocytosis , Phosphorylation , RAW 264.7 Cells , Salmonella typhimurium/metabolism , Stress, Physiological , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...