Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Sci (Lond) ; 135(9): 1065-1082, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33960391

ABSTRACT

Cellular therapy with mesenchymal stem cells (MSCs) is a huge challenge for scientists, as little translational relevance has been achieved. However, many studies using MSCs have proved their suppressive and regenerative capacity. Thus, there is still a need for a better understanding of MSCs biology and the establishment of newer protocols, or to test unexplored tissue sources. Here, we demonstrate that murine endometrial-derived MSCs (meMSCs) suppress Experimental Autoimmune Encephalomyelitis (EAE). MSC-treated animals had milder disease, with a significant reduction in Th1 and Th17 lymphocytes in the lymph nodes and in the central nervous system (CNS). This was associated with increased Il27 and Cyp1a1 expression, and presence of IL-10-secreting T CD4+ cells. At EAE peak, animals had reduced CNS infiltrating cells, histopathology and demyelination. qPCR analysis evidenced the down-regulation of several pro-inflammatory genes and up-regulation of indoleamine-2,3-dioxygenase (IDO). Consistently, co-culturing of WT and IDO-/- meMSCs with T CD4+ cells evidenced the necessity of IDO on the suppression of encephalitogenic lymphocytes, and IDO-/- meMSCs were not able to suppress EAE. In addition, WT meMSCs stimulated with IL-17A and IFN-γ increased IDO expression and secretion of kynurenines in vitro, indicating a negative feedback loop. Pathogenic cytokines were increased when CD4+ T cells from AhR-/- mice were co-cultured with WT meMSC. In summary, our research evidences the suppressive activity of the unexplored meMSCs population, and shows the mechanism depends on IDO-kynurenines-Aryl hydrocarbon receptor (AhR) axis. To our knowledge this is the first report evidencing that the therapeutic potential of meMSCs relying on IDO expression.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/therapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mesenchymal Stem Cell Transplantation , Animals , Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/immunology , Endometrium/cytology , Female , Lymphocyte Activation , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Mice, Inbred C57BL , T-Lymphocytes/metabolism
2.
Science ; 372(6540)2021 04 23.
Article in English | MEDLINE | ID: mdl-33888612

ABSTRACT

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS). In vivo cell-specific genetic perturbation EAE studies, in vitro systems, and the analysis of MS scRNA-seq datasets and CNS tissue established that Sema4D and Ephrin-B3 expressed in microglia control astrocyte responses via PlexinB2 and EphB3, respectively. Furthermore, a CNS-penetrant EphB3 inhibitor suppressed astrocyte and microglia proinflammatory responses and ameliorated EAE. In summary, RABID-seq identified microglia-astrocyte interactions and candidate therapeutic targets.


Subject(s)
Astrocytes/physiology , Cell Communication , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Microglia/physiology , Multiple Sclerosis/physiopathology , Single-Cell Analysis , Animals , Antigens, CD/metabolism , Brain/pathology , Brain/physiopathology , Central Nervous System/physiopathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Ephrin-B3/metabolism , Herpesvirus 1, Suid/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Multiple Sclerosis/pathology , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , RNA-Seq , Reactive Oxygen Species/metabolism , Receptor, EphB3/antagonists & inhibitors , Receptor, EphB3/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Signal Transduction , T-Lymphocytes/physiology , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...