Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 8: e8880, 2020.
Article in English | MEDLINE | ID: mdl-32509444

ABSTRACT

The new ichnospecies Paleohelcura araraquarensis isp. nov. is described from the Upper Jurassic-Lower Cretaceous Botucatu Formation of Brazil. This formation records a gigantic eolian sand sea (erg), formed under an arid climate in the south-central part of Gondwana. This trackway is composed of two track rows, whose internal width is less than one-quarter of the external width, with alternating to staggered series, consisting of three elliptical tracks that can vary from slightly elongated to tapered or circular. The trackways were found in yellowish/reddish sandstone in a quarry in the Araraquara municipality, São Paulo State. Comparisons with neoichnological studies and morphological inferences indicate that the producer of Paleohelcura araraquarensis isp. nov. was most likely a pterygote insect, and so could have fulfilled one of the ecological roles that different species of this group are capable of performing in dune deserts. The producer could have had a herbivorous or carnivorous diet or been part of the fauna of omnivores, being able to adopt herbivorous, carnivorous, and saprophagous diets when necessary. In modern dune deserts, some species of pterygote insects are detritivores (like Tenebrionidae), relying on organic matter that accumulated among the sand grains of the dunes during dry periods with no plant growth. The presence of additional burrows suggests that the Botucatu paleodesert would have had a detritivorous fauna like this. Based on the interpretation of the ichnofossil producers, it was possible to reconstruct the food web of this paleodesert. All the omnivorous and herbivorous invertebrates and the herbivorous ornithopod dinosaurs made up the primary consumers. These animals were, in turn, the food source for bigger carnivorous or omnivorous animals unable to feed on detritus, like arachnids, possible predatory insects, mammaliaforms, and theropod dinosaurs. The highest trophic level was occupied by larger theropod dinosaurs and mammaliaforms, which, because of their size, could prey upon a wide range of animals. The producer of Paleohelcura araraquarensis isp. nov. could have been a primary consumer if it were an omnivorous detritivore or a herbivore, or a secondary consumer if it were produced by a predatory insect or an omnivore relying on animal biomass. The description of this new trackway expands the knowledge on the faunal composition of the Botucatu paleodesert and provides insights into the ecological relationships in ancient deserts. The presence of these arthropod trackways in Mesozoic eolian deposits helps to trace a continuity between Paleozoic and post-Paleozoic desert ichnofaunas, further reinforcing a single Octopodichnus-Entradichnus Ichnofacies for eolian deposits.

2.
Geobiology ; 11(4): 307-17, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23621394

ABSTRACT

The extensive matgrounds in Carboniferous-Permian open-marine deposits of western Argentina constitute an anachronistic facies, because with the onset of penetrative bioturbation during the early Paleozoic microbial mats essentially disappeared from these settings. Abundant microbially induced sedimentary structures in the Argentinean deposits are coincident with the disappearance of trace and body fossils in the succession and with a landward facies shift indicative of transgressive conditions. Deposits of the Late Carboniferous-Early Permian glacial event are well developed in adjacent basins in eastern Argentina, Brazil, South Africa and Antarctica, but do not occur in the western Andean basins of Argentina. However, the deglaciation phase is indirectly recorded in the studied region by a rapid rise in sea level referred to as the Stephanian-Asselian transgression. We suggest that an unusual release of meltwater during the final deglaciation episode of the Gondwana Ice Age may have dramatically freshened peri-Gondwanan seas, impacting negatively on coastal and shallow-marine benthic faunas. Suppression of bioturbation was therefore conducive to a brief re-appearance of matground-dominated ecosystems, reminiscent of those in the precambrian. Bioturbation is essential for ecosystem performance and plays a major role in ocean and sediment geochemistry. Accordingly, the decimation of the mixed layer during deglaciation in the Gondwana basins may have altered ecosystem functioning and geochemical cycling.


Subject(s)
Aquatic Organisms , Ecosystem , Geologic Sediments/chemistry , Ice Cover , Oceans and Seas , Antarctic Regions , Argentina , Brazil , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL