Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Food Microbiol ; 415: 110635, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38432055

ABSTRACT

Biopreservation is an approach consisting of using microorganisms as protective cultures and/or their metabolites to optimize the microbiological quality and shelf life of food by ensuring safety or reducing food waste. Biopreservation strain selection pipelines mainly focus on inhibition strength to identify strains of interest. However, in addition to inhibition strength, inhibition activity must be able to be expressed despite significant variations in food matrix properties. In this study, the anti-Listeria monocytogenes EGDelux properties of a collection of 77 Carnobacterium maltaromaticum strains were investigated by high throughput competition assays under varying conditions of co-culture inoculation level, time interval between inoculation with C. maltaromaticum and L. monocytogenes, pH, and NaCl, resulting in 1309 different combinations of C. maltaromaticum strains and culture conditions. This screening led to the selection of two candidate strains with potent and robust anti-L. monocytogenes activities. Deferred growth inhibition assays followed by halo measurements, and liquid co-culture followed by colony counting, revealed that these two strains exhibit a wide anti-Listeria spectrum. Challenge tests in Camembert and Saint-Nectaire cheese revealed both strains were able to inhibit a cocktail of five strains of L. monocytogenes with high potency and high reproducibility. These results highlight the importance of including the robustness criterion in addition to potency when designing a strain selection process for biopreservation applications.


Subject(s)
Carnobacterium , Cheese , Listeria monocytogenes , Refuse Disposal , Cheese/microbiology , Reproducibility of Results , Food Microbiology
2.
Microb Cell Fact ; 23(1): 50, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355580

ABSTRACT

BACKGROUND: Microbial communities harbor important biotechnological potential in diverse domains, however, the engineering and propagation of such communities still face both knowledge and know-how gaps. More specifically, culturing tools are needed to propagate and shape microbial communities, to obtain desired properties, and to exploit them. Previous work suggested that micro-confinement and segregation of microorganisms using invert (water-in-oil, w/o) emulsion broth can shape communities during propagation, by alleviating biotic interactions and inducing physiological changes in cultured bacteria. The present work aimed at evaluating invert emulsion and simple broth monophasic cultures for the propagation and shaping of bacterial communities derived from raw milk in a serial propagation design. RESULTS: The monophasic setup resulted in stable community structures during serial propagation, whereas the invert emulsion system resulted in only transiently stable structures. In addition, different communities with different taxonomic compositions could be obtained from a single inoculum. Furthermore, the implementation of invert emulsion systems has allowed for the enrichment of less abundant microorganisms and consequently facilitated their isolation on culture agar plates. CONCLUSIONS: The monophasic system enables communities to be propagated in a stable manner, whereas the invert emulsion system allowed for the isolation of less abundant microorganisms and the generation of diverse taxonomic compositions from a single inoculum.


Subject(s)
Bacteria , Microbiota , Emulsions , Biotechnology , Water
3.
Microb Cell Fact ; 22(1): 16, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36670385

ABSTRACT

The large application potential of microbiomes has led to a great need for mixed culture methods. However, microbial interactions can compromise the maintenance of biodiversity during cultivation in a reactor. In particular, competition among species can lead to a strong disequilibrium in favor of the fittest microorganism. In this study, an invert emulsion system was designed by dispersing culture medium in a mixture of sunflower oil and the surfactant PGPR. Confocal laser scanning microscopy revealed that this system allowed to segregate microorganisms in independent droplets. Granulomorphometric analysis showed that the invert emulsion remains stable during at least 24 h, and that the introduction of bacteria did not have a significant impact on the structure of the invert emulsion. A two-strain antagonistic model demonstrated that this invert emulsion system allows the propagation of two strains without the exclusion of the less-fit bacterium. The monitoring of single-strain cultures of bacteria representative of a cheese microbiota revealed that all but Brevibacterium linens were able to grow. A consortium consisting of Lactococcus lactis subsp. lactis biovar diacetylactis, Streptococcus thermophilus, Leuconostoc mesenteroides, Staphylococcus xylosus, Lactiplantibacillus plantarum and Carnobacterium maltaromaticum was successfully cultivated without detectable biotic interactions. Metabarcoding analysis revealed that the system allowed a better maintenance of alpha diversity and produced a propagated bacterial consortium characterized by a structure closer to the initial state compared to non-emulsified medium. This culture system could be an important tool in the field of microbial community engineering.


Subject(s)
Bacteria , Cheese , Biodiversity , Cheese/microbiology , Emulsions , Food Microbiology , Lactococcus lactis , Microbial Interactions
4.
Microorganisms ; 10(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144396

ABSTRACT

Carnobacterium maltaromaticum is a non-starter lactic acid bacterium (LAB) of interest in the dairy industry for biopreservation. This study investigated the interference competition network and the specialized metabolites biosynthetic gene clusters (BGCs) content in this LAB in order to explore the relationship between the antimicrobial properties and the genome content. Network analysis revealed that the potency of inhibition tended to increase when the inhibition spectrum broadened, but also that several strains exhibited a high potency and narrow spectrum of inhibition. The C. maltaromaticum strains with potent anti-L. monocytogenes were characterized by high potency and a wide intraspecific spectrum. Genome mining of 29 strains revealed the presence of 12 bacteriocin BGCs: four of class I and eight of class II, among which seven belong to class IIa and one to class IIc. Overall, eight bacteriocins and one nonribosomal peptide synthetase and polyketide synthase (NRPS-PKS) BGCs were newly described. The comparison of the antimicrobial properties resulting from the analysis of the network and the BGC genome content allowed us to delineate candidate BGCs responsible for anti-L. monocytogenes and anti-C. maltaromaticum activity. However, it also highlighted that genome analysis is not suitable in the current state of the databases for the prediction of genes involved in the antimicrobial activity of strains with a narrow anti-C. maltaromaticum activity.

5.
Sci Rep ; 10(1): 7335, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355239

ABSTRACT

While competition targeting food-borne pathogens is being widely documented, few studies have focused on competition among non-pathogenic food bacteria. Carnobacterium maltaromaticum is a genetically diverse lactic acid bacterium known for comprising several bacteriocinogenic strains with bioprotective potentialities against the food-borne pathogen Listeria monocytogenes. The aim of our study is to examine the network properties of competition among a collection of 73 strains of C. maltaromaticum and to characterize their individual interaction potential. The performed high-throughput competition assays, investigating 5 329 pairwise interactions, showed that intraspecific competition was major in C. maltaromaticum with approximately 56% of the sender strains antagonizing at least one receiver strain. A high diversity of inhibitory and sensitivity spectra was identified along with a majority of narrow inhibitory as well as sensitivity spectra. Through network analysis approach, we determined the highly nested architecture of C. maltaromaticum competition network, thus showing that competition in this species is determined by both the spectrum width of the inhibitory activity of sender strains and the spectrum width of the sensitivity of receiver strains. This study provides knowledge of the competition network in C. maltaromaticum that could be used in rational assembly of compatible microbial strains for the design of mixed starter cultures.


Subject(s)
Antibiosis , Carnobacterium/physiology , Food Contamination , Food Microbiology , Listeria monocytogenes/physiology , Microbial Sensitivity Tests , Animals , Bacteriocins , Binding, Competitive , Fish Products , Fishes/microbiology , Humans , Lactic Acid/metabolism , Meat Products , Species Specificity
6.
Front Microbiol ; 9: 1883, 2018.
Article in English | MEDLINE | ID: mdl-30174662

ABSTRACT

This article describes a method for high-throughput competition assays using a bioluminescent strain of L. monocytogenes. This method is based on the use of the luminescent indicator strain L. monocytogenes EGDelux. The luminescence of this strain is correlated to growth, which make it suitable to monitor the growth of L. monocytogenes in mixed cultures. To this aim, luminescence kinetics were converted into a single numerical value, called the Luminescence Disturbance Indicator (LDI), which takes into account growth inhibition phenomena resulting in latency increase, decrease in the luminescence rate, or reduction of the maximum luminescence. The LDI allows to automatically and simultaneously handle multiple competition assays which are required for high-throughput screening (HTS) approaches. The method was applied to screen a collection of 1810 strains isolated from raw cow's milk in order to identify non-acidifying strains with anti-L. monocytogenes bioprotection properties. This method was also successfully used to identify anti-L. monocytogenes candidates within a collection of Lactococcus piscium, a species where antagonism was previously described as non-diffusible and requiring cell-to-cell contact. In conclusion, bioluminescent L. monocytogenes can be used in HTS to identify strains with anti-L. monocytogenes bioprotection properties, irrespectively of the inhibition mechanism.

7.
Front Microbiol ; 8: 357, 2017.
Article in English | MEDLINE | ID: mdl-28337181

ABSTRACT

Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium.

8.
Int J Food Microbiol ; 226: 1-4, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-26998709

ABSTRACT

Carnobacterium maltaromaticum is a Lactic Acid Bacterium (LAB) of technological interest for the food industry, especially the dairy as bioprotection and ripening flora. The industrial use of this LAB requires accurate and resolutive typing tools. A new typing method for C. maltaromaticum inspired from MLVA analysis and called Repeat-based Sequence Typing (RST) is described. Rather than electrophoresis analysis, our RST method is based on sequence analysis of multiple loci containing Variable-Number Tandem-Repeats (VNTRs). The method described here for C. maltaromaticum relies on the analysis of three VNTR loci, and was applied to a collection of 24 strains. For each strain, a PCR product corresponding to the amplification of each VNTR loci was sequenced. Sequence analysis allowed delineating 11, 11, and 12 alleles for loci VNTR-A, VNTR-B, and VNTR-C, respectively. Considering the allele combination exhibited by each strain allowed defining 15 genotypes, ending in a discriminatory index of 0.94. Comparison with MLST revealed that both methods were complementary for strain typing in C. maltaromaticum.


Subject(s)
Carnobacterium/classification , Carnobacterium/genetics , Food Microbiology , Alleles , Genetic Variation , Genotype , Minisatellite Repeats/genetics , Multilocus Sequence Typing , Polymerase Chain Reaction , Species Specificity
9.
Microb Biotechnol ; 9(4): 466-77, 2016 07.
Article in English | MEDLINE | ID: mdl-26147827

ABSTRACT

We describe the impact of two propeptides and PedC on the production yield and the potency of recombinant pediocins produced in Lactococcus lactis. On the one hand, the sequences encoding the propeptides SD or LEISSTCDA were inserted between the sequence encoding the signal peptide of Usp45 and the structural gene of the mature pediocin PA-1. On the other hand, the putative thiol-disulfide oxidoreductase PedC was coexpressed with pediocin. The concentration of recombinant pediocins produced in supernatants was determined by enzyme-linked immunosorbent assay. The potency of recombinant pediocins was investigated by measuring the minimal inhibitory concentration by agar well diffusion assay. The results show that propeptides SD or LEISSTCDA lead to an improved secretion of recombinant pediocins with apparently no effect on the antibacterial potency and that PedC increases the potency of recombinant pediocin. To our knowledge, this study reveals for the first time that pediocin tolerates fusions at the N-terminal end. Furthermore, it reveals that only expressing the pediocin structural gene in a heterologous host is not sufficient to get an optimal potency and requires the accessory protein PedC. In addition, it can be speculated that PedC catalyses the correct formation of disulfide bonds in pediocin.


Subject(s)
Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Metabolic Engineering , Pediocins/genetics , Pediocins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Enzyme-Linked Immunosorbent Assay , Metabolic Networks and Pathways/genetics , Microbial Sensitivity Tests , Pediocins/analysis , Recombinant Proteins/analysis , Sequence Analysis, DNA
10.
Food Chem ; 169: 41-8, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25236196

ABSTRACT

Docosahexaenoic acid vanillyl ester (DHA-VE) was synthesized from docosahexaenoic acid ethyl ester (DHA-EE) and vanillyl alcohol by a solvent-free alcoholysis process catalysed by Candida antarctica lipase B. Oxidative stability of pure DHA-VE and the crude reaction medium consisting of 45% DHA-VE and 55% DHA-EE were compared with that of DHA-EE under various storage conditions. Oxidation progress was followed by determination of conjugated dienes and FTIR measurements. Analyses showed that DHA-EE was rapidly oxidised under all storage conditions in comparison with DHA-VE and crude reaction medium, whatever the temperature and the storage time. The grafting of vanillyl alcohol appeared as a powerful way to stabilize DHA against oxidation. Thanks to their stability, both DHA-VE and the crude reaction medium, allowing the production of the ester, offer huge potential as functional ingredients.


Subject(s)
Docosahexaenoic Acids/chemistry , Fungal Proteins/chemistry , Lipase/chemistry , Benzyl Alcohols/chemistry , Esters/chemistry , Oxidation-Reduction
11.
Biopolymers ; 91(8): 610-22, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19301297

ABSTRACT

Mechanisms leading to the assembly of wheat storage proteins into proteins bodies within the endoplasmic reticulum (ER) of endosperm cells are unresolved today. In this work, physical chemistry parameters which could be involved in these processes were explored. To model the confined environment of proteins within the ER, the dynamic behavior of gamma-gliadins inserted inside lyotropic lamellar phases was studied using FRAP experiments. The evolution of the diffusion coefficient as a function of the lamellar periodicity enabled to propose the hypothesis of an interaction between gamma-gliadins and membranes. This interaction was further studied with the help of phospholipid Langmuir monolayers. gamma- and omega-gliadins were injected under DMPC and DMPG monolayers and the two-dimensional (2D) systems were studied by Brewster angle microscopy (BAM), polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and surface tension measurements. Results showed that both gliadins adsorbed under phospholipid monolayers, considered as biological membrane models, and formed micrometer-sized domains at equilibrium. However, their thicknesses, probed by reflectance measurements, were different: omega-gliadins aggregates displayed a constant thickness, consistent with a monolayer, while the thickness of gamma-gliadins aggregates increased with the quantity of protein injected. These different behaviors could find some explanations in the difference of aminoacid sequence distribution: an alternate repeated - unrepeated domain within gamma-gliadin sequence, while one unique repeated domain was present within omega-gliadin sequence. All these findings enabled to propose a model of gliadins self-assembly via a membrane interface and to highlight the predominant role of wheat prolamin repeated domain in the membrane interaction. In the biological context, these results would mean that the repeated domain could be considered as an anchor for the interaction with the ER membrane and a nucleus point for the formation and growth of protein bodies within endosperm cells. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 610-622, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.


Subject(s)
Gliadin/chemistry , Amino Acid Sequence , Gliadin/genetics , Membrane Lipids/chemistry , Membranes, Artificial , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes/chemistry
12.
Langmuir ; 23(26): 13066-75, 2007 Dec 18.
Article in English | MEDLINE | ID: mdl-18031067

ABSTRACT

Microscopic and molecular structures of omega- and gamma-gliadin monolayers at the air-water interface were studied under compression by three complementary techniques: compression isotherms, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). For high molecular areas, gliadin films are homogeneous, and a flat orientation of secondary structures relative to the interface is observed. With increasing compression, the nature and orientation of secondary structures changed to minimize the interfacial area. The gamma-gliadin film is the most stable at the air-water interface; its interfacial volume is constant with increasing compression, contrary to omega-gliadin films whose molecules are forced out of the interface. gamma-Gliadin stability at a high level of compression is interpreted by a stacking model.


Subject(s)
Gliadin/chemistry , Microscopy/methods , Spectrum Analysis/methods , Air , Protein Conformation , Spectroscopy, Fourier Transform Infrared , Water
13.
Plant Cell ; 19(5): 1580-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17526751

ABSTRACT

Few organisms are able to withstand desiccation stress; however, desiccation tolerance is widespread among plant seeds. Survival without water relies on an array of mechanisms, including the accumulation of stress proteins such as the late embryogenesis abundant (LEA) proteins. These hydrophilic proteins are prominent in plant seeds but also found in desiccation-tolerant organisms. In spite of many theories and observations, LEA protein function remains unclear. Here, we show that LEAM, a mitochondrial LEA protein expressed in seeds, is a natively unfolded protein, which reversibly folds into alpha-helices upon desiccation. Structural modeling revealed an analogy with class A amphipathic helices of apolipoproteins that coat low-density lipoprotein particles in mammals. LEAM appears spontaneously modified by deamidation and oxidation of several residues that contribute to its structural features. LEAM interacts with membranes in the dry state and protects liposomes subjected to drying. The overall results provide strong evidence that LEAM protects the inner mitochondrial membrane during desiccation. According to sequence analyses of several homologous proteins from various desiccation-tolerant organisms, a similar protection mechanism likely acts with other types of cellular membranes.


Subject(s)
Desiccation , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Pisum sativum/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Circular Dichroism , Liposomes/metabolism , Models, Molecular , Molecular Sequence Data , Phospholipids/metabolism , Plants, Genetically Modified , Protein Folding , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...