Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36839037

ABSTRACT

Acrylonitrile Butadiene Styrene (ABS) nanocomposites were developed using Material Extrusion (MEX) Additive Manufacturing (AM) and Fused Filament Fabrication (FFF) methods. A range of mechanical tests was conducted on the produced 3D-printed structures to investigate the effect of Titanium Nitride (TiN) nanoparticles on the mechanical response of thermoplastic polymers. Detailed morphological characterization of the produced filaments and 3D-printed specimens was carried out using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). High-magnification images revealed a direct impact of the TiN concentration on the surface characteristics of the nanocomposites, indicating a strong correlation with their mechanical performance. The chemical compositions of the raw and nanocomposite materials were thoroughly investigated by conducting Raman and Energy Dispersive Spectroscopy (EDS) measurements. Most of the mechanical properties were improved with the inclusion of TiN nanoparticles with a content of 6 wt. % to reach the optimum mechanical response overall. ABS/TiN 6 wt. % exhibits remarkable increases in flexural modulus of elasticity (42.3%) and toughness (54.0%) in comparison with pure ABS. The development of ABS/TiN nanocomposites with reinforced mechanical properties is a successful example that validates the feasibility and powerful abilities of MEX 3D printing in AM.

2.
Materials (Basel) ; 15(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36556610

ABSTRACT

Polycarbonate-based nanocomposites were developed herein through a material extrusion (MEX) additive manufacturing (AM) process. The fabrication of the final nanocomposite specimens was achieved by implementing the fused filament fabrication (FFF) 3D printing process. The impact of aluminum nitride (AlN) nanoparticles on the thermal and mechanical behavior of the polycarbonate (PC) matrix was investigated thoroughly for the fabricated nanocomposites, carrying out a range of thermomechanical tests. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) provided information about the morphological and surface characteristics of the produced specimens. Using energy dispersive spectroscopy (EDS), the elemental composition of the nanocomposite materials was validated. Raman spectroscopy revealed no chemical interactions between the two material phases. The results showed the reinforcement of most mechanical properties with the addition of the AlN nanoparticles. The nanocomposite with 2 wt.% filler concentration exhibited the best mechanical performance overall, with the highest improvements observed for the tensile strength and toughness of the fabricated specimens, with a percentage of 32.8% and 51.6%, respectively, compared with the pure polymer. The successful AM of PC/AlN nanocomposites with the MEX process is a new paradigm, which expands 3D printing technology and opens a new route for the development of nanocomposite materials with multifunctional properties for industrial applications.

3.
ACS Appl Energy Mater ; 3(3): 2168-2174, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32226925

ABSTRACT

Substitution of tin by indium in shandite-type phases, A3Sn2S2 with mixed Co/Fe occupancy of the A-sites is used to tune the Fermi level within a region of the density of states in which there are sharp, narrow bands of predominantly metal d-character. Materials of general formula Co2.5+x Fe0.5-x Sn2--yIn y S2 (x = 0, 0.167; 0.0 ≤ y ≤ 0.7) have been prepared by solid-state reaction and the products characterized by powder X-ray diffraction. Electrical-transport property data reveal that the progressive depopulation of the upper conduction band as tin is replaced by indium increases the electrical resistivity, and the weakly temperature-dependent ρ(T) becomes more semiconducting in character. Concomitant changes in the negative Seebeck coefficient, the temperature dependence of which becomes increasingly linear, suggests the more highly substituted materials are n-type degenerate semiconductors. The power factors of the substituted phases, while increased, exhibit a weak temperature dependence. The observed reductions in thermal conductivity are principally due to reductions in the charge-carrier contribution on hole doping. A maximum figure-of-merit of (ZT)max = 0.29 is obtained for the composition Co2.667Fe0.333Sn1.6In0.4S2 at 573 K: among the highest values for an n-type sulfide at this temperature.

4.
Phys Chem Chem Phys ; 21(35): 19311-19317, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31451820

ABSTRACT

Semiconducting quaternary chalcogenides with A2ZnBQ4 stoichiometry, where A and B are monovalent and tetravalent metal ions and Q is a chalcogen (e.g. Cu2ZnSnS4 or CZTS) have recently attracted attention as potential solar-cell absorbers made from abundant and non-toxic elements. Unfortunately, they exhibit relatively poor sunlight conversion efficiencies, which has been linked to site disorder within the tetrahedral cation sub-lattice. In order to gain a better understanding of the factors controlling cation disorder in these chalcogenides, we have used powder neutron diffraction, coupled with Density Functional Theory (DFT) simulations, to investigate the detailed structure of A2ZnBQ4 phases, with A = Cu, Ag; B = Sn, Ge; and Q = S, Se. Both DFT calculations and powder neutron diffraction data demonstrate that the kesterite structure (space group: I4[combining macron]) is adopted in preference to the higher-energy stannite structure (space group: I4[combining macron]2m). The contrast between the constituent cations afforded by neutron diffraction reveals that copper and zinc cations are only partially ordered in the kesterites Cu2ZnBQ4 (B = Sn, Ge), whereas the silver-containing phases are fully ordered. The degree of cation order in the copper-containing phases shows a greater sensitivity to the identity of the B-cation than to the chalcogenide anion. DFT indicates that cation ordering minimises inter-planar Zn2+Zn2+ electrostatic interactions, while there is an additional intra-planar energy contribution associated with size mismatch. The complete Ag/Zn order in Ag2ZnBQ4 (B = Sn, Ge) phases can thus be related to the anisotropic expansion of the unit cell on replacing Cu with Ag.

SELECTION OF CITATIONS
SEARCH DETAIL