Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
2.
Proc Biol Sci ; 290(2008): 20231601, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37788704

ABSTRACT

Coral reef fisheries supply nutritious catch to tropical coastal communities, where the quality of reef seafood is determined by both the rate of biomass production and nutritional value of reef fishes. Yet our understanding of reef fisheries typically uses targets of total reef fish biomass rather than individual growth (i.e. biomass production) and nutrient content (i.e. nutritional value of reef fish), limiting the ability of management to sustain the productivity of nutritious catches. Here, we use modelled growth coefficients and nutrient concentrations to develop a new metric of nutrient productivity of coral reef fishes. We then evaluate this metric with underwater visual surveys of reef fish assemblages from four tropical countries to examine nutrient productivity of reef fish food webs. Species' growth coefficients were associated with nutrients that vary with body size (calcium, iron, selenium and zinc), but not total nutrient density. When integrated with fish abundance data, we find that herbivorous species typically dominate standing biomass, biomass turnover and nutrient production on coral reefs. Such bottom-heavy trophic distributions of nutrients were consistent across gradients of fishing pressure and benthic composition. We conclude that management restrictions that promote sustainability of herbivores and other low trophic-level species can sustain biomass and nutrient production from reef fisheries that is critical to the food security of over 500 million people in the tropics.


Subject(s)
Anthozoa , Coral Reefs , Humans , Animals , Fisheries , Conservation of Natural Resources , Biomass , Nutrients , Fishes , Ecosystem
3.
Conserv Biol ; 37(6): e14156, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37728514

ABSTRACT

Understanding the relative effectiveness and enabling conditions of different area-based management tools is essential for supporting efforts that achieve positive biodiversity outcomes as area-based conservation coverage increases to meet newly set international targets. We used data from a coastal social-ecological monitoring program in 6 Indo-Pacific countries to analyze whether social, ecological, and economic objectives and specific management rules (temporal closures, fishing gear-specific, species-specific restrictions) were associated with coral reef fish biomass above sustainable yield levels across different types of area-based management tools (i.e., comparing those designated as marine protected areas [MPAs] with other types of area-based management). All categories of objectives, multiple combinations of rules, and all types of area-based management had some sites that were able to sustain high levels of reef fish biomass-a key measure for coral reef functioning-compared with reference sites with no area-based management. Yet, the same management types also had sites with low biomass. As governments advance their commitments to the Kunming-Montreal Global Biodiversity Framework and the target to conserve 30% of the planet's land and oceans by 2030, we found that although different types of management can be effective, most of the managed areas in our study regions did not meet criteria for effectiveness. These findings underscore the importance of strong management and governance of managed areas and the need to measure the ecological impact of area-based management rather than counting areas because of their designation.


Efectos de las reglas y objetivos de manejo sobre los resultados de conservación marina Resumen Es esencial entender la efectividad relativa y las condiciones habilitantes de las diferentes herramientas de manejo basadas en el área para respaldar los esfuerzos que brindan resultados positivos para la biodiversidad conforme aumenta la cobertura de la conservación basada en el área para alcanzar los objetivos internacionales recién establecidos. Usamos los datos de un programa de monitoreo socioeconómico costero en seis países del Indo-Pacífico para analizar si los objetivos sociales, ecológicos y económicos y las reglas específicas de manejo (cierres temporales, restricciones de equipo de pesca, vedas de especies) se asociaban con la biomasa de los peces de arrecife de coral por encima de los niveles de producción sustentable en diferentes tipos de herramientas de manejo basadas en el área (es decir, comparar aquellas designadas como áreas marinas protegidas[AMP] con otros tipos de manejo basado en el área). Todas las categorías de objetivos, las múltiples combinaciones de reglas y todos los tipos de manejo basado en el área tuvieron algunos sitios capaces de mantener los niveles altos de biomasa de peces de arrecife-una medida importante para el funcionamiento de los arrecifes-en comparación con los sitios de referencia sin manejo basado en el área. Sin embargo, los mismos tipos de manejo también tuvieron sitios con baja biomasa. Conforme los gobiernos avanzan en sus compromisos con el Marco Global de Biodiversidad de Kunming-Montreal y hacia el objetivo de conservar el 30% del suelo y los océanos del planeta para el 2030, descubrimos que, aunque diferentes tipos de manejo pueden ser efectivos, la mayoría de las áreas manejadas en nuestras regiones de estudio no cumplieron con los criterios de efectividad. Este descubrimiento enfatiza la importancia de una gestión y un gobierno sólidos de las áreas manejadas y la necesidad de medir el impacto ecológico del manejo basado en el área en lugar de contar las áreas por su designación.


Subject(s)
Biodiversity , Conservation of Natural Resources , Animals , Coral Reefs , Oceans and Seas , Fishes
4.
Nat Ecol Evol ; 6(12): 1808-1817, 2022 12.
Article in English | MEDLINE | ID: mdl-36192542

ABSTRACT

The sustainability of coral reef fisheries is jeopardized by complex and interacting socio-ecological stressors that undermine their contribution to food and nutrition security. Climate change has emerged as one of the key stressors threatening coral reefs and their fish-associated services. How fish nutrient concentrations respond to warming oceans remains unclear but these responses are probably affected by both direct (metabolism and trophodynamics) and indirect (habitat and species range shifts) effects. Climate-driven coral habitat loss can cause changes in fish abundance and biomass, revealing potential winners and losers among major fisheries targets that can be predicted using ecological indicators and biological traits. A critical next step is to extend research focused on the quantity of available food (fish biomass) to also consider its nutritional quality, which is relevant to progress in the fields of food security and malnutrition. Biological traits are robust predictors of fish nutrient content and thus potentially indicate how climate-driven changes are expected to impact nutrient availability within future food webs on coral reefs. Here, we outline future research priorities and an anticipatory framework towards sustainable reef fisheries contributing to nutrition-sensitive food systems in a warming ocean.


Subject(s)
Anthozoa , Coral Reefs , Animals , Climate Change , Anthozoa/physiology , Fisheries , Fishes/physiology , Nutrients
5.
Mar Policy ; 137: 104954, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35035031

ABSTRACT

Resilience of food systems is key to ensuring food security through crisis. The COVID-19 pandemic presents an unprecedented shock that reveals varying levels of resilience of increasingly interconnected food systems across the globe. We contribute to the ongoing debate about whether increased connectivity reduces or enhances resilience in the context of rural Pacific food systems, while examining how communities have adapted to the global shocks associated with the pandemic to ensure food security. We conducted 609 interviews across 199 coastal villages from May to October 2020 in Federated States of Micronesia, Fiji, Palau, Papua New Guinea, Solomon Islands, Tonga, and Tuvalu to understand community-level impacts and adaptations during the first 5-10 months of the COVID-19 crisis. We found that local food production practices and food sharing conferred resilience, and that imported foods could aid or inhibit resilience. Communities in countries more reliant on imports were almost twice as likely to report food insecurity compared to those least reliant. However, in places dealing with a concurrent cyclone, local food systems were impaired, and imported foods proved critical. Our findings suggest that policy in the Pacific should bolster sustainable local food production and practices. Pacific states should avoid becoming overly reliant on food imports, while having measures in place to support food security after disasters, supplementing locally produced and preserved foods with imported foods when necessary. Developing policies that promote resilient food systems can help prepare communities for future shocks, including those anticipated with climate change.

6.
Environ Sci Policy ; 120: 195-203, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34867082

ABSTRACT

The global COVID-19 pandemic has exposed the shortcomings of our health, social, and economic systems. While responding to the health crisis, governments are scrambling to understand and address the knock-on economic effects from market disruptions, and respond to other major disturbances (e.g. natural disasters). We conducted 61 key informant interviews with Indo-Fijian small-scale fisheries (SSF) actors (i.e. fishers, boat owners (that may or may not fish), crew members, and traders) in May 2020, two months after Fiji got its first case of COVID-19 and a month after Cyclone Harold hit the country. We examined how these SSF groups whose access to resources depends on their ability to navigate existing social relations of power, have lived through, experienced, and responded to the two stresses. We found the main impact of COVID-19 on SSF actors was the reduction in sales of fish (73.8 % of respondents) likely a result of reduction in local consumption and/or the loss of tourism markets. Loss of purchasing power meant almost a fifth of Indo-Fijian SSF actors interviewed (comprising 44.4 % of crew members, 16.4 % fishers, 11.5 % boat owners, 8.3 % traders) were unable to obtain sufficient food to meet their families' daily needs. Many of these SSF actors do not have access to social security or similar safety nets leaving them vulnerable to the current crisis as well as to other shocks and changes. Furthermore, social inequities and power relations surrounding access to fisheries resources and government aid contributed to their vulnerability to economic stresses from COVID-19 and a severe cyclone. An understanding of early impacts of COVID-19 on SSF through an intersectional lens can assist decision-makers to quickly mobilise assistance to help people who are most vulnerable, and avoid widening inequities among social groups.

9.
PLoS Biol ; 19(6): e3001282, 2021 06.
Article in English | MEDLINE | ID: mdl-34129646

ABSTRACT

Success and impact metrics in science are based on a system that perpetuates sexist and racist "rewards" by prioritizing citations and impact factors. These metrics are flawed and biased against already marginalized groups and fail to accurately capture the breadth of individuals' meaningful scientific impacts. We advocate shifting this outdated value system to advance science through principles of justice, equity, diversity, and inclusion. We outline pathways for a paradigm shift in scientific values based on multidimensional mentorship and promoting mentee well-being. These actions will require collective efforts supported by academic leaders and administrators to drive essential systemic change.


Subject(s)
Reward , Science , Bias , Cultural Diversity , Humans , Mentoring
10.
Nat Food ; 2(9): 733-741, 2021 Sep.
Article in English | MEDLINE | ID: mdl-37117475

ABSTRACT

Small-scale fisheries and aquaculture (SSFA) provide livelihoods for over 100 million people and sustenance for ~1 billion people, particularly in the Global South. Aquatic foods are distributed through diverse supply chains, with the potential to be highly adaptable to stresses and shocks, but face a growing range of threats and adaptive challenges. Contemporary governance assumes homogeneity in SSFA despite the diverse nature of this sector. Here we use SSFA actor profiles to capture the key dimensions and dynamism of SSFA diversity, reviewing contemporary threats and exploring opportunities for the SSFA sector. The heuristic framework can inform adaptive governance actions supporting the diversity and vital roles of SSFA in food systems, and in the health and livelihoods of nutritionally vulnerable people-supporting their viability through appropriate policies whilst fostering equitable and sustainable food systems.

12.
Mar Pollut Bull ; 150: 110710, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31753567

ABSTRACT

Existing marine bioregions covering the Pacific Ocean are conceptualised at spatial scales that are too broad for national marine spatial planning. Here, we developed the first combined oceanic and coastal marine bioregionalisation at national scales, delineating 262 deep-water and 103 reef-associated bioregions across the southwest Pacific. The deep-water bioregions were informed by thirty biophysical environmental variables. For reef-associated environments, records for 806 taxa at 7369 sites were used to predict the probability of observing taxa based on environmental variables. Both deep-water and reef-associated bioregions were defined with cluster analysis applied to the environmental variables and predicted species observation probabilities, respectively to classify areas with high taxonomic similarity. Local experts further refined the delineation of the bioregions at national scales for four countries. This work provides marine bioregions that enable the design of ecologically representative national systems of marine protected areas within offshore and inshore environments in the Pacific.


Subject(s)
Biodiversity , Conservation of Natural Resources , Coral Reefs , Cluster Analysis , Oceans and Seas , Pacific Ocean
13.
J Environ Manage ; 233: 291-301, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30583103

ABSTRACT

Resilience underpins the sustainability of both ecological and social systems. Extensive loss of reef corals following recent mass bleaching events have challenged the notion that support of system resilience is a viable reef management strategy. While resilience-based management (RBM) cannot prevent the damaging effects of major disturbances, such as mass bleaching events, it can support natural processes that promote resistance and recovery. Here, we review the potential of RBM to help sustain coral reefs in the 21st century. We explore the scope for supporting resilience through existing management approaches and emerging technologies and discuss their opportunities and limitations in a changing climate. We argue that for RBM to be effective in a changing world, reef management strategies need to involve both existing and new interventions that together reduce stress, support the fitness of populations and species, and help people and economies to adapt to a highly altered ecosystem.


Subject(s)
Anthozoa , Coral Reefs , Animals , Climate , Ecosystem
14.
PeerJ ; 6: e4773, 2018.
Article in English | MEDLINE | ID: mdl-29796344

ABSTRACT

Sea cucumbers play an important role in the recycling and remineralization of organic matter (OM) in reef sands through feeding, excretion, and bioturbation processes. Growing demand from Asian markets has driven the overexploitation of these animals globally. The implications of sea cucumber fisheries for shallow coastal ecosystems and their management remain poorly understood. To address this knowledge gap, the current study manipulated densities of Holothuria scabra within enclosures on a reef flat in Fiji, between August 2015 and February 2016, to study the effects of sea cucumber removal on sedimentary function as a biocatalytic filter system. Three treatments were investigated: (i) high density (350 g m-2 wet weight; ca. 15 individuals); (ii) natural density (60 g m-2; ca. 3 individuals); and (iii) exclusion (0 g m-2). Quantity of sediment reworked through ingestion by H. scabra, grain size distribution, O2 penetration depth, and sedimentary oxygen consumption (SOC) were quantified within each treatment. Findings revealed that the natural population of H. scabra at the study site can rework ca. 10,590 kg dry sediment 1,000 m-2 year-1; more than twice the turnover rate recorded for H. atra and Stichopus chloronotus. There was a shift towards finer fraction grains in the high treatment. In the exclusion treatment, the O2 penetration depth decreased by 63% following a 6 °C increase in water temperature over the course of two months, while in the high treatment no such change was observed. SOC rates increased ca. two-fold in the exclusion treatment within the first month, and were consistently higher than in the high treatment. These results suggest that the removal of sea cucumbers can reduce the capacity of sediments to buffer OM pulses, impeding the function and productivity of shallow coastal ecosystems.

15.
Sci Rep ; 7(1): 4740, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28684861

ABSTRACT

Coastal ecosystems can be degraded by poor water quality. Tracing the causes of poor water quality back to land-use change is necessary to target catchment management for coastal zone management. However, existing models for tracing the sources of pollution require extensive data-sets which are not available for many of the world's coral reef regions that may have severe water quality issues. Here we develop a hierarchical Bayesian model that uses freely available satellite data to infer the connection between land-uses in catchments and water clarity in coastal oceans. We apply the model to estimate the influence of land-use change on water clarity in Fiji. We tested the model's predictions against underwater surveys, finding that predictions of poor water quality are consistent with observations of high siltation and low coverage of sediment-sensitive coral genera. The model thus provides a means to link land-use change to declines in coastal water quality.


Subject(s)
Anthozoa/growth & development , Conservation of Natural Resources/methods , Environmental Monitoring/methods , Water Quality , Animals , Bayes Theorem , Coral Reefs , Ecosystem , Fiji , Oceans and Seas , Satellite Imagery/statistics & numerical data
16.
Philos Trans R Soc Lond B Biol Sci ; 370(1681)2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26460128

ABSTRACT

Quasi-experimental impact evaluation approaches, which enable scholars to disentangle effects of conservation interventions from broader changes in the environment, are gaining momentum in the conservation sector. However, rigorous impact evaluation using statistical matching techniques to estimate the counterfactual have yet to be applied to marine protected areas (MPAs). While there are numerous studies investigating 'impacts' of MPAs that have generated considerable insights, results are variable. This variation has been linked to the biophysical and social context in which they are established, as well as attributes of management and governance. To inform decisions about MPA placement, design and implementation, we need to expand our understanding of conditions under which MPAs are likely to lead to positive outcomes by embracing advances in impact evaluation methodologies. Here, we describe the integration of impact evaluation within an MPA network monitoring programme in the Bird's Head Seascape, Indonesia. Specifically we (i) highlight the challenges of implementation 'on the ground' and in marine ecosystems and (ii) describe the transformation of an existing monitoring programme into a design appropriate for impact evaluation. This study offers one potential model for mainstreaming impact evaluation in the conservation sector.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring/methods , Animals , Biodiversity , Ecosystem , Indonesia , Marine Biology
17.
Glob Chang Biol ; 21(1): 48-61, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25196132

ABSTRACT

Cumulative pressures from global climate and ocean change combined with multiple regional and local-scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio-economic settings, we present an Adaptive Resilience-Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press-type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse-type (acute) stressors (e.g. storms, bleaching events, crown-of-thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo-Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on-the-ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services.


Subject(s)
Climate Change , Conservation of Natural Resources/methods , Coral Reefs , Ecosystem , Environment , Models, Theoretical , Oceans and Seas
18.
Adv Mar Biol ; 69: 289-324, 2014.
Article in English | MEDLINE | ID: mdl-25358303

ABSTRACT

The Republic of Kiribati's Phoenix Islands Protected Area (PIPA), located in the equatorial central Pacific, is the largest and deepest UNESCO World Heritage site on earth. Created in 2008, it was the first Marine Protected Area (MPA) of its kind (at the time of inception, the largest in the world) and includes eight low-lying islands, shallow coral reefs, submerged shallow and deep seamounts and extensive open-ocean and ocean floor habitat. Due to their isolation, the shallow reef habitats have been protected de facto from severe exploitation, though the surrounding waters have been continually fished for large pelagics and whales over many decades. PIPA was created under a partnership between the Government of Kiribati and the international non-governmental organizations-Conservation International and the New England Aquarium. PIPA has a unique conservation strategy as the first marine MPA to use a conservation contract mechanism with a corresponding Conservation Trust established to be both a sustainable financing mechanism and a check-and-balance to the oversight and maintenance of the MPA. As PIPA moves forward with its management objectives, it is well positioned to be a global model for large MPA design and implementation in similar contexts. The islands and shallow reefs have already shown benefits from protection, though the pending full closure of PIPA (and assessments thereof) will be critical for determining success of the MPA as a refuge for open-ocean pelagic and deep-sea marine life. As global ocean resources are continually being extracted to support a growing global population, PIPA's closure is both timely and of global significance.


Subject(s)
Conservation of Natural Resources , Fisheries , Government Programs , Animals , Cooperative Behavior , Ecosystem , Federal Government , Fishes , Geography , Micronesia , Organizations , Public-Private Sector Partnerships
19.
Proc Natl Acad Sci U S A ; 110(15): 6229-34, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23530207

ABSTRACT

Triple-bottom-line outcomes from resource management and conservation, where conservation goals and equity in social outcomes are maximized while overall costs are minimized, remain a highly sought-after ideal. However, despite widespread recognition of the importance that equitable distribution of benefits or costs across society can play in conservation success, little formal theory exists for how to explicitly incorporate equity into conservation planning and prioritization. Here, we develop that theory and implement it for three very different case studies in California (United States), Raja Ampat (Indonesia), and the wider Coral Triangle region (Southeast Asia). We show that equity tends to trade off nonlinearly with the potential to achieve conservation objectives, such that similar conservation outcomes can be possible with greater equity, to a point. However, these case studies also produce a range of trade-off typologies between equity and conservation, depending on how one defines and measures social equity, including direct (linear) and no trade-off. Important gaps remain in our understanding, most notably how equity influences probability of conservation success, in turn affecting the actual ability to achieve conservation objectives. Results here provide an important foundation for moving the science and practice of conservation planning-and broader spatial planning in general-toward more consistently achieving efficient, equitable, and effective outcomes.


Subject(s)
Conservation of Natural Resources/methods , Environmental Monitoring , Animals , Asia, Southeastern , Biodiversity , California , Conservation of Natural Resources/economics , Ecosystem , Fisheries , Humans , Indonesia
20.
Mar Pollut Bull ; 64(11): 2279-95, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22863353

ABSTRACT

The Bird's Head Seascape located in eastern Indonesia is the global epicenter of tropical shallow water marine biodiversity with over 600 species of corals and 1,638 species of coral reef fishes. The Seascape also includes critical habitats for globally threatened marine species, including sea turtles and cetaceans. Since 2001, the region has undergone rapid development in fisheries, oil and gas extraction, mining and logging. The expansion of these sectors, combined with illegal activities and poorly planned coastal development, is accelerating deterioration of coastal and marine environments. At the same time, regency governments have expanded their marine protected area networks to cover 3,594,702 ha of islands and coastal waters. Low population numbers, relatively healthy natural resources and a strong tenure system in eastern Indonesia provide an opportunity for government and local communities to collaboratively manage their resources sustainably to ensure long-term food security, while meeting their development aspirations.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Animals , Birds , Indonesia , Oceans and Seas , Social Planning
SELECTION OF CITATIONS
SEARCH DETAIL
...