Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 22(4): 1504-1510, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35112876

ABSTRACT

Temporal and spectral behaviors of plasmons determine their ability to enhance the characteristics of metamaterials tailored to a wide range of applications, including electric-field enhancement, hot-electron injection, sensing, as well as polarization and angular momentum manipulation. We report a dark-field (DF) polarimetry experiment on single particles with incident circularly polarized light in which gold nanoparticles scatter with opposite handedness at visible wavelengths. Remarkably, for silvered nanoporous silica microparticles, the handedness conversion occurs at longer visible wavelengths, only after adsorption of molecules on the silver. Finite element analysis (FEA) allows matching the circular polarization (CP) conversion to dominant quadrupolar contributions, determined by the specimen size and complex susceptibility. We hypothesize that the damping accompanying the adsorption of molecules on the nanostructured silver facilitates the CP conversion. These results offer new perspectives in molecule sensing and materials tunability for light polarization conversion and control of light spin angular momentum at submicroscopic scale.

2.
Acta Biomater ; 136: 389-401, 2021 12.
Article in English | MEDLINE | ID: mdl-34624554

ABSTRACT

Modelling of needle insertion in soft tissue has developed significant interest in recent years due to its application in robot-assisted minimally invasive surgeries such as biopsies and brachytherapy. However, this type of surgery requires real-time feedback and processing which complex computational models may not be able to provide. In contrast to the existing mechanics-based kinetic models, a simple multilayer tissue model using a Coupled Eulerian Lagrangian based Finite Element method has been developed using the dynamic principle. The model simulates the needle motion for flexible hollow bevel-angled needle (15° and 30°, 22 Gauge) insertion into porcine liver tissue, which includes material parameters obtained from unconfined compression testing of porcine liver tissue. To validate simulation results, needle insertion force and cutting force within porcine liver tissue were compared with corresponding experimental results obtained from a custom-built needle insertion system. For the 15° and 30° bevel-angle needles, the percentage error for cutting force (mean) of each needle compared to computational model, were 18.7% and 11.9% respectively. Varying the needle bevel angle from 30° to 15° results in an increase of the cutting force, but insertion force does not vary among the tested bevel angles. The validation of this computationally efficient multilayer Finite Element model can help engineers to better understand the biomechanical behaviour of medical needle inside soft biological tissue. Ultimately, this multilayer approach can help advance state-of-art clinical applications such as robot-assisted surgery that requires real-time feedback and processing. STATEMENT OF SIGNIFICANCE: The significance of the work is in confirming the effectiveness of multilayer material based finite element (FE) method to model biopsy needle insertion into soft biological porcine liver tissue. A multilayer Coupled Eulerian Lagrangian (CEL) based FE modelling technique allowed testing of heterogeneous, non-linear viscoelastic porcine liver tissue in a system, so direct comparison of needle tissue interaction forces on the intrinsic material (tissue) behaviour could be made. To the best of the authors' knowledge, the present research investigates for the first time modelling of a three dimensional (3D) hollow needle insertion using a multilayer stiffness model of biological tissue using FE based CEL method and presents a comparison of simulation results with experimental data.


Subject(s)
Needles , Punctures , Animals , Biopsy, Needle , Computer Simulation , Liver , Models, Biological , Swine
3.
J Therm Anal Calorim ; 142(2): 1115-1122, 2020.
Article in English | MEDLINE | ID: mdl-33132749

ABSTRACT

Broadband mid-infrared (B-MIR) thermography using fibre optic waveguides can be critical in real-time imaging in harsh environments such as additive manufacturing, personalised medical diagnosis and therapy. We investigate the polarisation effect on thermal measurements through poly-crystalline fibre bundle employing a simple broadband cross-polarisation configuration experimental set-up. Silver halide poly-crystalline fibres AgCl1-xBrx (0 ≤ x≤1) (AgClBr-PolyC) have very wide transmission bandwidth spanning over the spectral range from 1 µm up to 31 µm FWHM. Moreover, they are non-toxic, non-hygroscopic, with relatively good flexibility, which make them very adequate for spectroscopic and thermal measurements in medical and clinical fields. In this study, we used a fibre bundle composed of seven single AgClBr-PolyC fibres, each with a core diameter of about 300 µm, inserted between two broadband MIR polarisers. A silicon carbide filament source was placed at the entrance of the fibre bundle, while a FLIR thermal camera with a close-up lens was employed to measure the spatial temperature distribution over the fibre-bundle end. Indeed, polarisation dependence of temperature measurements has been clearly observed in which the orientation of temperature extrema (minima and maxima) vary from one fibre to another within the bundle. Moreover, these observations have enabled the classification of AgClBr-PolyC fibres following their polarisation sensitivities by which some fibres are relatively highly sensitive to polarisation with polarisation temperature difference (PTD) that can reach 22.1 ± 2.8 °C, whereas some others show very low PTD values down to 3.1 ± 2.8 °C. Many applications can readily be found based on the advantages of both extreme cases.

4.
J Mech Behav Biomed Mater ; 111: 103896, 2020 11.
Article in English | MEDLINE | ID: mdl-32791488

ABSTRACT

BACKGROUND: A thorough understanding of cutting-edge geometry and cutting forces of hollow biopsy needles are required to optimise needle tip design to improve fine needle aspiration procedures. OBJECTIVES: To incorporate the dynamics of needle motion in a model for flexible hollow bevel tipped needle insertion into a biological mimetic soft-gel using parameters obtained from experimental work. Additionally, the models will be verified against corresponding needle insertion experiments. METHODS: To verify simulation results, needle deflection and insertion forces were compared with corresponding experimental results acquired with an in-house developed needle insertion mechanical system. Additionally, contact stress distribution on needles from agar gel for various time scales were also studied. RESULTS: For the 15°, 30°, 45°, 60° bevel angle needles, and 90° blunt needle, the percentage error in needle deflection of each needle compared to experiments, were 7.3%, 9.9%, 8.6%, 7.8%, and 9.7% respectively. Varying the bevel angle at the needle tip demonstrates that the needle with a lower bevel angle produces the largest deflection, although the insertion force does not vary too much among the tested bevel angles. CONCLUSION: This experimentally verified computer-based simulation model could be used as an alternative tool for better understanding the needle-tissue interaction to optimise needle tip design towards improved biopsy efficiency.


Subject(s)
Biomimetics , Needles , Biopsy, Needle , Computer Simulation , Equipment Design , Motion
5.
Ultrasound Med Biol ; 46(9): 2453-2463, 2020 09.
Article in English | MEDLINE | ID: mdl-32546410

ABSTRACT

The ultrasonic visibility of a biopsy needle tip is of critical importance for the success and safety of endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) procedures. The aim of this study was to design a surface topology, in silico, which enhances the ultrasound visibility of a needle by controlling and optimising the direction of the reflections. Topographic enhancements to needle surface redirect scattered waves back to the transducer to enhance needle visibility, or "echogenicity." Echogenicity enhancement is demonstrated across insonification angles of 30°-90° on full-length scale of biopsy needles used in practice. By applying a textured surface across the full length of the needle surface, the signal being returned to the transducer can be tripled from that of a constant periodic dimple echogenic surface and seven times that of an untextured flat surface. Our first principles model provides a quantitative insight to echogenicity and its enhancement. The model allows in silico design of needles for USG-FNA and biopsy with enhanced echogenicity and consequent improvement in visibility, including but not limited to needle tip area.


Subject(s)
Endoscopic Ultrasound-Guided Fine Needle Aspiration/instrumentation , Needles , Ultrasonography , Equipment Design
6.
Comput Biol Med ; 111: 103337, 2019 08.
Article in English | MEDLINE | ID: mdl-31279981

ABSTRACT

Planning and practice of surgical procedures can be improved through the use of modelling. This study provides an insight into the biopsy needle (i.e. hollow cannula) and needle-tissue interactions using a modelling approach, thus enabling the optimization of needle-tip designs not only for training but also for the planning of surgical procedures. Simulations of needle insertion into agar gel were performed using a Coupled Eulerian-Lagrangian (CEL) based finite element (FE) analysis, adapted for large deformation and tissue fracture. The experimental work covers needle insertion into 3% agar gel using a needle with a beveled tip of various angles, to assess the validity of the simulation. The simulated needle deflection and insertion force for two needles (i.e. Needle 1 with 18° bevel angle and Needle 2 with 27° bevel angle) were compared with corresponding experimental results. The contact stress (i.e. contact pressure) on the needles from the agar gel during the insertion of the needles were also studied. Observations indicate that varying the needle bevel angle from 27° to 18° results in a decrease of the peak force (i.e. puncture force) and an increase in needle deflection. Quantitatively, the percentage errors between the experimental data and the FE model for the total insertion force along the z-direction (i.e. Z Force) for Needle 1 and 2 were 4% and 4.8% (p > 0.05), respectively. Similarly, needle deflection percentage errors along the x-z plane were 5.7% and 10% respectively. Therefore, the forces and needle deflection values predicted by the simulation are a close approximation of the experimental model, validating the Coupled Eulerian-Lagrangian based FE model. Thus, providing an experimentally validated model for biopsy and cytology needle design in silico that has the potential to replace the current build and break approach of needle design used by manufacturers.


Subject(s)
Biopsy, Needle , Models, Biological , Needles , Biopsy, Needle/instrumentation , Biopsy, Needle/methods , Equipment Design , Finite Element Analysis , Gels/chemistry , Humans , Phantoms, Imaging , Reproducibility of Results
7.
ACS Omega ; 3(6): 6143-6150, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-30023942

ABSTRACT

Drug delivery monitoring and tracking in the human body are two of the biggest challenges in targeted therapy to be addressed by nanomedicine. The ability of imaging drugs and micro-/nanoengineered drug carriers and of visualizing their interactions at the cellular interface in a label-free manner is crucial in providing the ability of tracking their cellular pathways and will help understand their biological impact, allowing thus to improve the therapeutic efficacy. We present a fast, label-free technique to achieve high-resolution imaging at the mid-infrared (MIR) spectrum that provides chemical information. Using our custom-made benchtop infrared microscope using a high-repetition-rate pulsed laser (80 MHz, 40 ps), we were able to acquire images with subwavelength resolution (0.8 × λ) at very high speeds. As a proof-of-concept, we embarked on the investigation of nanoengineered polyelectrolyte capsules (NPCs) containing the anticancer drug, docetaxel. These NPCs were synthesized using a layer-by-layer approach built upon a calcium carbonate (CaCO3) core, which was then removed away with ethylenediaminetetraacetic acid. The obtained MIR images show that NPCs are attached to the cell membrane, which is a good step toward an efficient drug delivery. This has been confirmed by both three-dimensional confocal fluorescence and stimulated emission depletion microscopy. Coupled with additional instrumentation and data processing advancements, this setup is capable of video-rate imaging speeds and will be significantly complementing current super-resolution microscopy techniques while providing an unperturbed view into living cells.

8.
Opt Express ; 25(12): 13145-13152, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788850

ABSTRACT

We have experimentally investigated the enhancement in spatial resolution by image subtraction in mid-infrared central solid-immersion lens (c-SIL) microscopy. The subtraction exploits a first image measured with the c-SIL point-spread function (PSF) realized with a Gaussian beam and a second image measured with the beam optically patterned by a silicon π-step phase plate, to realize a centrally hollow PSF. The intense sides lobes in both PSFs that are intrinsic to the SIL make the conventional weighted subtraction methods inadequate. A spatial-domain filter with a kernel optimized to match both experimental PSFs in their periphery was thus developed to modify the first image prior to subtraction, and this resulted in greatly improved performance, with polystyrene beads 1.4 ± 0.1 µm apart optically resolved with a mid-IR wavelength of 3.4 µm in water. Spatial-domain filtering is applicable to other PSF pairs, and simulations show that it also outperforms conventional subtraction methods for the Gaussian and doughnut beams widely used in visible and near-IR microscopy.

9.
Opt Express ; 24(21): 24377-24389, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27828167

ABSTRACT

The spatial resolution in far-field mid-infrared (λ>2.5 µm) microscopy and micro-spectroscopy remains limited with the full-width at half maximum of the point-spread function ca. λ/1.3; a value that is very poor in comparison to that commonly accessible with visible and near-infrared optics. Hereafter, it is demonstrated however that polymer beads that are centre-to-centre spaced by λ/2.6 can be resolved in the mid-infrared. The more than 2-fold improvement in resolution in the far-field is achieved by exploiting a newly constructed scanning microscope built around a mid-infrared optical parametric oscillator and a central solid-immersion lens, and by enforcing the linear polarization unidirectional resolution enhancement with a novel and robust specimen error minimization based on a particle swarm optimization. The method is demonstrated with specimens immersed in air and in water, and its robustness shown by the analysis of dense and complex self-assembled bead islands.

SELECTION OF CITATIONS
SEARCH DETAIL
...