Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36557922

ABSTRACT

Highly efficient interfacial contact between components in nanohybrids is a key to achieving great photocatalytic activity in photocatalysts and degradation of organic model pollutants under visible light irradiation. Herein, we report the synthesis of nano-assembly of graphene oxide, zinc oxide and cerium oxide (GO-ZnO@CeO2) nanohybrids constructed by the hydrothermal method and subsequently annealed at 300 °C for 4 h. The unique graphene oxide sheets, which are anchored with semiconducting materials (ZnO and CeO2 nanoparticles), act with a significant role in realizing sufficient interfacial contact in the new GO-ZnO@CeO2 nanohybrids. Consequently, the nano-assembled structure of GO-ZnO@CeO2 exhibits a greater level (96.66%) of MB dye degradation activity than GO-ZnO nanostructures and CeO2 nanoparticles on their own. This is due to the thin layers of GO-ZnO@CeO2 nanohybrids with interfacial contact, suitable band-gap matching and high surface area, preferred for the improvement of photocatalytic performance. Furthermore, this work offers a facile building and cost-effective construction strategy to synthesize the GO-ZnO@CeO2 nanocatalyst for photocatalytic degradation of organic pollutants with long-term stability and higher efficiency.

2.
J Colloid Interface Sci ; 592: 385-396, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33677198

ABSTRACT

Rational design and highly efficient dual-functional catalyst are still difficult to develop for electrocatalytic oxygen evolution reaction and degradation of RhB dye pollutant. Herein, we report a highly efficient "bandgap matching and interfacial coupling" strategy to synthesize nano-assembled ultrathin layered MoS2@NiFe2O4 (MS@NiFeO) bifunctional catalyst constructed by the hydrothermal route and subsequently amine-hydrolysis. The OER performance of the prepared MS@NiFeO catalyst delivers a low overpotential of 290 mV at 10 mA/cm2 and Tafel slope is 69.2 mV dec-1 in an alkaline solution. In addition, the nano-assembled ultrathin layered structure of MS@NiFeO showed a highly efficient (96.37%) RhB dye degradation performance than that of MoS2 nanosheets and NiFe2O4 nanostructures. Unique nanostructure of ultrathin layered MS@NiFeO with suitable band matching, interfacial charge transfer, high surface area and more active sites favored for the enhancement of the catalytic activity. This work presents an unpretentious construction and low-cost production strategy to synthesize bifunctional hybrid catalyst for oxygen evolution reaction as well as degradation of organic pollutant with superior efficiency and longer stability.

3.
Analyst ; 138(19): 5811-8, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23897002

ABSTRACT

A poly(methylene blue)-modified glassy carbon electrode (PMB/GCE) was fabricated by electropolymerisation of methylene blue on a GCE and further utilized to investigate the electrochemical determination of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), differential pulse voltammetry and chronocoulometry. The morphology of the PMB on GCE was examined using a scanning electron microscope (SEM). An oxidation peak of 4-NP at the PMB modified electrode was observed at 0.28 V, and in the case of bare GCE, no oxidation peak was observed, which indicates that PMB/GCE exhibits a remarkable effect on the electrochemical determination of 4-NP. Due to this remarkable effect of PMB/GCE, a sensitive and simple electrochemical method was proposed for the determination of 4-NP. The effect of the scan rate and pH was investigated to determine the optimum conditions at which the PMB/GCE exhibits a higher sensitivity with a lower detection limit. Moreover, kinetic parameters such as the electron transfer number, proton transfer number and standard heterogeneous rate constant were calculated. Under optimum conditions, the oxidation current of 4-NP is proportional to its concentration in the range of 15-250 nM with a correlation coefficient of 0.9963. The detection limit was found to be 90 nM (S/N = 3). The proposed method based on PMB/GCE is simple, easy and cost effective. To further confirm its possible application, the proposed method was successfully used for the determination of 4-NP in real water samples with recoveries ranging from 97% to 101.6%. The interference due to sodium, potassium, calcium, magnesium, copper, zinc, iron, sulphate, carbonate, chloride, nitrate and phosphate was found to be almost negligible.


Subject(s)
Carbon/chemistry , Glass/chemistry , Methylene Blue/chemistry , Nanotechnology/methods , Nitrophenols/analysis , Electrodes , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...