Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0294863, 2024.
Article in English | MEDLINE | ID: mdl-38630672

ABSTRACT

Diversity analysis using molecular markers serves as a powerful tool in unravelling the intricacies of inclusivity within various populations and is an initial step in the assessment of populations and the development of inbred lines for host plant resistance in maize. This study was conducted to assess the genetic diversity and population structure of 242 newly developed S3 inbred lines using 3,305 single nucleotide polymorphism (SNP) markers and to also assess the level of homozygosity achieved in each of the inbred lines. A total of 1,184 SNP markers were found highly informative, with a mean polymorphic information content (PIC) of 0.23. Gene diversity was high among the inbred lines, ranging from 0.04 to 0.50, with an average of 0.27. The residual heterozygosity of the 242 S3 inbred lines averaged 8.8%, indicating moderately low heterozygosity levels among the inbred lines. Eighty-four percent of the 58,322 pairwise kinship coefficients among the inbred lines were near zero (0.00-0.05), with only 0.3% of them above 0.50. These results revealed that many of the inbred lines were distantly related, but none were redundant, suggesting each inbred line had a unique genetic makeup with great potential to provide novel alleles for maize improvement. The admixture-based structure analysis, principal coordinate analysis, and neighbour-joining clustering were concordant in dividing the 242 inbred lines into three subgroups based on the pedigree and selection history of the inbred lines. These findings could guide the effective use of the newly developed inbred lines and their evaluation in quantitative genetics and molecular studies to identify candidate lines for breeding locally adapted fall armyworm tolerant varieties in Ghana and other countries in West and Central Africa.


Subject(s)
Polymorphism, Single Nucleotide , Zea mays , Animals , Zea mays/genetics , Spodoptera , Genotype , Plant Breeding , Genetic Variation
2.
Agron Sustain Dev ; 41(4): 50, 2021.
Article in English | MEDLINE | ID: mdl-34721676

ABSTRACT

Plant breeders' knowledge of precise traits preferred by variety users would accelerate varietal turnover and widen adoption of newly developed maize varieties in Ghana. The objective of this research was to provide empirical evidence of trait preferences of farmers and other actors in the maize value chain in northern Ghana, based on which research strategies for maize improvement could be formulated. Participatory rural appraisal was conducted in 2016 to determine key traits preferred by maize value chain actors across the three regions in northern Ghana. A total of 279 maize value chain actors were interviewed. Different scoring and ranking techniques were used to assess the maize traits preferred by the different actors. Participatory variety selection trials were also conducted in the Tolon, West Gonja, Binduri, and Sissala East districts in northern Ghana from 2014 to 2016. The mother-baby trial approach was used to evaluate eight hybrids with 3000 farmers. Data on yield and agronomic performance of the hybrids and farmer's selection criteria were collected. Data analyses were performed using GenStat Edition 16 and SPSS Edition 20 statistical packages. The participatory rural appraisal method identified farmers, input dealers, traders, and processors as the primary maize value chain actors in the study areas. Trait preferences of the different actors overlapped and revolved around grain quality including nutritional value, and stress tolerance and grain yield. Results of the participatory variety selection study revealed that across districts, farmers preferred high-yielding varieties with multiple cobs per plant, white grain endosperm color, and bigger and fully filled cobs. For the first time, our holistic assessment of the trait preferences of key actors of the maize value chain in northern Ghana revealed a comprehensive list of traits, which could be used by breeders to develop varieties that may be preferred by all value chain actors in northern Ghana. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13593-021-00708-w.

3.
ScientificWorldJournal ; 2020: 9390287, 2020.
Article in English | MEDLINE | ID: mdl-32802007

ABSTRACT

Information on combining ability and reciprocal effects (REC) facilitates efficient utilization of genetic materials in a breeding program. This study was conducted (at the CSIR-Savanna Agricultural Research Institute, Ghana) to determine general combining ability (GCA) and specific combining ability (SCA), heritability, genetic advance, GCA, and SCA effects as well as the relationship between parents per se performance and progenies for yield components and maturity traits in cowpea. The test populations were derived using a 5 × 5 complete diallel cross of parents with different yield attributes and maturity durations. The results indicated that GCA was predominant for number of days to 90% pod maturity, plant height at maturity, and hundred-seed weight. This showed that genes with additive effects conditioned these traits. Padi-Tuya, Songotra, and IT86D-610 were identified as good general combiners for grain yield, while Sanzi-Nya was identified as a general combiner for developing extra-early duration cowpea varieties. Crosses Songotra × Sanzi-Nya, SARC-1-57-2 × IT86D-610, Songotra × SARC-1-57-2, and Padi-Tuya × Songotra were identified as good specific combiners for days to 50% flowering, pod length, pods per plant, pod yield, grain yield, and seeds per pod. The findings from this study provide useful information on the inheritance of early maturity and yield traits in cowpea. This can be exploited to develop high yielding and early maturing cowpea varieties as climate smart strategy to mitigate climate change via breeding methods such as pedigree selection and marker assisted backcrossing (MABC). Pedigree selection method is being used to develop varieties from the hybrid with high and significant SCA for grain yield, whereas the development of extra-early duration varieties via MABC with Sanzi-Nya (general combiner for earliness traits) as a donor parent is ongoing.


Subject(s)
Vigna/growth & development , Vigna/genetics , Alleles , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Genetic Variation , Genotype , Ghana , Seeds/genetics , Vigna/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...