Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Gen Physiol Biophys ; 33(1): 81-90, 2014.
Article in English | MEDLINE | ID: mdl-24334533

ABSTRACT

The present investigation was conducted to understand the influence of long-term exposure of rats to extremely low frequency magnetic fields (ELF-MF), focusing on oxidative stress (OS) on different regions of rat's brain. Male Wistar rats (21-day-old) were exposed to ELF-MF (50 Hz; 50 and 100 µT) for 90 days continuously; hippocampal, cerebellar and cortical regions from rats were analyzed for (i) reactive oxygen species (ROS), (ii) metabolites indicative of OS and (iii) antioxidant enzymes. In comparison to control group rats, the rats that were continuously exposed to ELF-MF caused OS and altered glutathione (GSH/GSSG) levels in dose-dependent manner in all the regions of the brain. Accumulation of ROS, lipid peroxidation end products and activity of superoxide dismutase in different regions was in the descending order of cerebellum < hippocampus < cortex. Decrement in GSH/GSSG levels and increment in glutathione peroxidase activity were in the descending order of hippocampus < cerebellum < cortex. The continuous exposure to ELF-MF caused OS in all the examined regions of brain more significantly at 100 µT than at 50 µT. Varied influences observed in different regions of the brain, as documented in this study, may contribute to altered metabolic patterns in its related regions of the central nervous system, leading to aberrant neuronal functions.


Subject(s)
Brain/pathology , Lipid Peroxidation , Magnetic Fields , Oxidative Stress , Reactive Oxygen Species , Animals , Antioxidants/chemistry , Antioxidants/metabolism , Brain Mapping/methods , Cerebellum/metabolism , Cerebral Cortex/metabolism , Glutathione/chemistry , Glutathione/metabolism , Hippocampus/metabolism , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
2.
Neurosci Lett ; 413(2): 145-9, 2007 Feb 14.
Article in English | MEDLINE | ID: mdl-17196332

ABSTRACT

Extremely low frequency (ELF<300Hz) electromagnetic fields affect several neuronal activities including memory. Because ELF magnetic fields cause altered Ca(2+) homeostasis in neural tissues, we examined their influence on Ca(2+) signaling enzymes in hippocampus and related them with NMDA receptor functions. Hippocampal regions were obtained from brains of 21-day-old rats that were exposed for 90 days to 50Hz magnetic fields at 50 and 100 microT intensities. In comparison to controls, ELF exposure caused increased intracellular Ca(2+) levels concomitant with increased activities of Ca(2+)-dependent protein kinase C (PKC), cAMP-dependent protein kinase and calcineurin as well as decreased activity of Ca(2+)-calmodulin-dependent protein kinase in hippocampal regions. Simultaneous ligand-binding studies revealed decreased binding to N-methyl-D-aspartic acid (NMDA) receptors. The combined results suggest that perturbed neuronal functions caused by ELF exposure may involve altered Ca(2+) signaling events contributing to aberrant NMDA receptor activities.


Subject(s)
Calcium Signaling/radiation effects , Calcium/metabolism , Electromagnetic Fields/adverse effects , Hippocampus/radiation effects , Receptors, N-Methyl-D-Aspartate/radiation effects , Animals , Binding, Competitive/physiology , Binding, Competitive/radiation effects , Calcineurin , Calcium Signaling/physiology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/radiation effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/radiation effects , Glutamic Acid/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Memory Disorders/etiology , Memory Disorders/metabolism , Memory Disorders/physiopathology , Protein Kinase C/metabolism , Protein Kinase C/radiation effects , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/physiology , Synaptic Transmission/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...