Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 53(2): 1348-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27162416

ABSTRACT

In this study, the effect of commercial additives viz. cafodos and altesa employed to treat Indian octopus (Cistopus indicus) was examined during chilled and frozen storage. Shelf lives of treated and untreated octopus in ice were 6 and 8 days, respectively in ice. Treated and untreated frozen octopus had a shelf life of 40 days. Autolytic and microbiological changes were not controlled by the additives, as evidenced through rapid reduction in non-protein nitrogen (NPN) and α-amino nitrogen (α-AN) compounds; as well as accumulation of water soluble ammoniacal nitrogen and total volatile base- nitrogen (TVB-N) compounds. Loss of texture and colour were the major quality defects noticed in treated octopus as a result of enhanced protein solubility. Therefore, the additives approved for use in octopus neither enhanced the shelf life nor improved the sensory quality.

2.
Food Sci Biotechnol ; 25(3): 665-672, 2016.
Article in English | MEDLINE | ID: mdl-30263321

ABSTRACT

Squid protein hydrolysates (SPH) were prepared from the Indian squid Loligo duvauceli using papain. Response surface methodology (RSM) was used for optimization of hydrolysis conditions, including temperature, time, and the enzyme-substrate ratio using DPPH radical scavenging activity as a response. The amino acid composition of SPH was compared with raw squid muscle. In vitro antioxidant activities were evaluated based on reducing power, metal chelation, ABTS, hydroxyl radical, and superoxide anion radical scavenging assays. SPH exhibited good ABTS radical scavenging activities of 96.50±0.90%, superoxide anion radical scavenging activities of 96.4±0.89%, reducing powers of 0.71±0.02, moderate hydroxyl radical scavenging activities of 64.03±2.11%, and metal chelating activities of 52.04±1.02%. In vivo antioxidant activities determined using a sardine minced model system showed 42% reduction in formation of secondary oxidative products as thiobarbituric acid reactive substances (TBARS), almost equivalent to reduction by ascorbic acid of 41.42% at 400 ppm.

SELECTION OF CITATIONS
SEARCH DETAIL
...