Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(14): 2843-2856, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38547028

ABSTRACT

We present a self-consistent field (SCF) approach within the adaptive derivative-assembled problem-tailored ansatz variational quantum eigensolver (ADAPT-VQE) framework for efficient quantum simulations of chemical systems on near-term quantum computers. To this end, our ADAPT-VQE-SCF approach combines the idea of generating an ansatz with a small number of parameters, resulting in shallow-depth quantum circuits with a direct minimization of an energy expression that is correct to second order with respect to changes in the molecular orbital basis. Our numerical analysis, including calculations for the transition-metal complex ferrocene [Fe (C5H5)2], indicates that convergence in the self-consistent orbital optimization loop can be reached without a considerable increase in the number of two-qubit gates in the quantum circuit by comparison to a VQE optimization in the initial molecular orbital basis. Moreover, the orbital optimization can be carried out simultaneously within each iteration of the ADAPT-VQE cycle. ADAPT-VQE-SCF thus allows us to implement a routine analogous to the complete active space SCF, a cornerstone of state-of-the-art computational chemistry, in a hardware-efficient manner on near-term quantum computers. Hence, ADAPT-VQE-SCF paves the way toward a paradigm shift for quantitative quantum-chemistry simulations on quantum computers by requiring fewer qubits and opening up for the use of large and flexible atomic orbital basis sets in contrast to earlier methods that are predominantly based on the idea of full active spaces with minimal basis sets.

2.
Entropy (Basel) ; 25(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37238485

ABSTRACT

Protein-protein interaction (PPI) networks consist of the physical and/or functional interactions between the proteins of an organism, and they form the basis for the field of network medicine. Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-consuming, and often contain inaccuracies, the resulting networks are usually incomplete. In order to infer missing interactions in these networks, we propose a novel class of link prediction methods based on continuous-time classical and quantum walks. In the case of quantum walks, we examine the usage of both the network adjacency and Laplacian matrices for specifying the walk dynamics. We define a score function based on the corresponding transition probabilities and perform tests on six real-world PPI datasets. Our results show that continuous-time classical random walks and quantum walks using the network adjacency matrix can successfully predict missing protein-protein interactions, with performance rivalling the state-of-the-art.

3.
Philos Trans A Math Phys Eng Sci ; 380(2227): 20200421, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35599560

ABSTRACT

We introduce an experimentally accessible network representation for many-body quantum states based on entanglement between all pairs of its constituents. We illustrate the power of this representation by applying it to a paradigmatic spin chain model, the XX model, and showing that it brings to light new phenomena. The analysis of these entanglement networks reveals that the gradual establishment of quasi-long range order is accompanied by a symmetry regarding single-spin concurrence distributions, as well as by instabilities in the network topology. Moreover, we identify the existence of emergent entanglement structures, spatially localized communities enforced by the global symmetry of the system that can be revealed by model-agnostic community detection algorithms. The network representation further unveils the existence of structural classes and a cyclic self-similarity in the state, which we conjecture to be intimately linked to the community structure. Our results demonstrate that the use of tools and concepts from complex network theory enables the discovery, understanding and description of new physical phenomena even in models studied for decades. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.

4.
Phys Rev Lett ; 126(13): 130403, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33861108

ABSTRACT

We introduce the multipartite collision model, defined in terms of elementary interactions between subsystems and ancillas, and show that it can simulate the Markovian dynamics of any multipartite open quantum system. We develop a method to estimate an analytical error bound for any repeated interactions model, and we use it to prove that the error of our scheme displays an optimal scaling. Finally, we provide a simple decomposition of the multipartite collision model into elementary quantum gates, and show that it is efficiently simulable on a quantum computer according to the dissipative quantum Church-Turing theorem, i.e., it requires a polynomial number of resources.

5.
Entropy (Basel) ; 23(3)2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33799755

ABSTRACT

The quantum speed limit (QSL) is the theoretical lower limit of the time for a quantum system to evolve from a given state to another one. Interestingly, it has been shown that non-Markovianity can be used to speed-up the dynamics and to lower the QSL time, although this behaviour is not universal. In this paper, we further carry on the investigation on the connection between QSL and non-Markovianity by looking at the effects of P- and CP-divisibility of the dynamical map to the quantum speed limit. We show that the speed-up can also be observed under P- and CP-divisible dynamics, and that the speed-up is not necessarily tied to the transition from P-divisible to non-P-divisible dynamics.

6.
Nat Commun ; 9(1): 3453, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30150668

ABSTRACT

Engineering, controlling, and simulating quantum dynamics is a strenuous task. However, these techniques are crucial to develop quantum technologies, preserve quantum properties, and engineer decoherence. Earlier results have demonstrated reservoir engineering, construction of a quantum simulator for Markovian open systems, and controlled transition from Markovian to non-Markovian regime. Dephasing is an ubiquitous mechanism to degrade the performance of quantum computers. However, all-purpose quantum simulator for generic dephasing is still missing. Here, we demonstrate full experimental control of dephasing allowing us to implement arbitrary decoherence dynamics of a qubit. As examples, we use a photon to simulate the dynamics of a qubit coupled to an Ising chain in a transverse field and also demonstrate a simulation of nonpositive dynamical map. Our platform opens the possibility to simulate dephasing of any physical system and study fundamental questions on open quantum systems.

7.
Sci Rep ; 8(1): 13010, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30158659

ABSTRACT

We develop a local probe to estimate the connectivity of complex quantum networks. Our results show how global properties of different classes of complex networks can be estimated - in quantitative manner with high accuracy - by coupling a probe to a single node of the network. Here, our interest is focused on probing the connectivity, i.e. the degree sequence, and the value of the coupling constant within the complex network. The scheme combines results on classical graph theory with the ability to develop quantum probes for networks of quantum harmonic oscillators. Whilst our results are proof-of-principle type, within the emerging field of quantum complex networks they may have potential applications for example to the efficient transfer of quantum information or energy or possibly to shed light on the connection between network structure and dynamics.

8.
Sci Rep ; 7(1): 8367, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827609

ABSTRACT

We study the symmetry properties in the dynamics of quantum correlations for two-qubit systems in one-sided noisy channels, with respect to a switch in the location of noise from one qubit to the other. We consider four different channel types, namely depolarizing, amplitude damping, bit-flip, and bit-phase-flip channel, and identify the classes of initial states leading to symmetric decay of entanglement, non-locality and discord. Our results show that the symmetric decay of quantum correlations is not directly linked to the presence or absence of symmetry in the initial state, while it does depend on the type of correlation considered as well as on the type of noise. We prove that asymmetric decay can be used to infer, in certain cases, characteristic properties of the channel. We also show that the location of noise may lead to dramatic changes in the persistence of phenomena such as entanglement sudden death and time-invariant discord.

9.
Phys Rev Lett ; 118(8): 080404, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28282202

ABSTRACT

We provide an analysis on non-Markovian quantum evolution based on the spectral properties of dynamical maps. We introduce the dynamical analog of entanglement witness to detect non-Markovianity and we illustrate its behavior with several instructive examples. It is shown that for several important classes of dynamical maps the corresponding evolution of singular values and/or eigenvalues of the map provides a simple non-Markovianity witness.

10.
Sci Rep ; 6: 27989, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27323947

ABSTRACT

The natural framework to discuss thermodynamics at the quantum level is the theory of open quantum systems. Memory effects arising from strong system-environment correlations may lead to information back-flow, that is non-Markovian behaviour. The relation between non-Markovianity and quantum thermodynamics has been until now largely unexplored. Here we show by means of Landauer's principle that memory effects control the amount of work extraction by erasure in presence of realistic environments.

11.
Sci Rep ; 6: 26861, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27230125

ABSTRACT

We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.


Subject(s)
Computer Simulation , Quantum Theory , Environment , Models, Statistical , Oscillometry , Signal Processing, Computer-Assisted
12.
13.
Sci Rep ; 6: 19607, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26786857

ABSTRACT

We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.


Subject(s)
Models, Theoretical , Quantum Theory , Algorithms
14.
Article in English | MEDLINE | ID: mdl-25679608

ABSTRACT

We theoretically investigate fluctuation relations in a classical incomplete measurement process where only partial information is available. The scenario we consider consists of two coupled single-electron boxes where one or both devices can undergo a nonequilibrium transformation according to a chosen protocol. The entropy production of only one of the two boxes is recorded and fluctuation relations for this quantity are put to a test, showing strong modifications whose nature depends upon the specific case study.

15.
Phys Rev Lett ; 112(12): 120404, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24724632

ABSTRACT

We propose a new characterization of non-Markovian quantum evolution based on the concept of non-Markovianity degree. It provides an analog of a Schmidt number in the entanglement theory and reveals the formal analogy between quantum evolution and the entanglement theory: Markovian evolution corresponds to a separable state and the non-Markovian one is further characterized by its degree. It enables one to introduce a non-Markovianity witness-an analog of an entanglement witness, and a family of measures-an analog of Schmidt coefficients, and finally to characterize maximally non-Markovian evolution being an analog of the maximally entangled state. Our approach allows us to classify the non-Markovianity measures introduced so far in a unified rigorous mathematical framework.

16.
Phys Rev Lett ; 100(18): 180402, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18518352

ABSTRACT

Open quantum systems that interact with structured reservoirs exhibit non-Markovian dynamics. We present a quantum jump method for treating the dynamics of such systems. This approach is a generalization of the standard Monte Carlo wave function (MCWF) method for Markovian dynamics. The MCWF method identifies decay rates with jump probabilities and fails for non-Markovian systems where the time-dependent rates become temporarily negative. Our non-Markovian quantum jump approach circumvents this problem and provides an efficient unraveling of the ensemble dynamics.

17.
Phys Rev Lett ; 100(9): 090503, 2008 Mar 07.
Article in English | MEDLINE | ID: mdl-18352687

ABSTRACT

We study the exact entanglement dynamics of two atoms in a lossy resonator. Besides discussing the steady-state entanglement, we show that in the strong coupling regime the system-reservoir correlations induce entanglement revivals and oscillations and propose a strategy to fight against the deterioration of the entanglement using the quantum Zeno effect.

18.
Phys Rev Lett ; 97(13): 130402, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-17026013

ABSTRACT

In this Letter, we investigate the occurrence of the Zeno and anti-Zeno effects for quantum Brownian motion. We single out the parameters of both the system and the reservoir governing the crossover between Zeno and anti-Zeno dynamics. We demonstrate that, for high reservoir temperatures, the short time behavior of environment induced decoherence is ultimately responsible for the occurrence of either the Zeno or the anti-Zeno effect. Finally, we suggest a way to manipulate the decay rate of the system and to observe a controlled continuous passage from decay suppression to decay acceleration using engineered reservoirs in the trapped ion context.

SELECTION OF CITATIONS
SEARCH DETAIL
...