Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Physiol ; 156(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37943249

ABSTRACT

TRPM7, a TRP channel with ion conductance and kinase activities, has emerged as an attractive drug target for immunomodulation. Reverse genetics and cell biological studies have already established a key role for TRPM7 in the inflammatory activation of macrophages. Advancing TRPM7 as a viable molecular target for immunomodulation requires selective TRPM7 inhibitors with in vivo tolerability and efficacy. Such inhibitors have the potential to interdict inflammatory cascades mediated by systemic and tissue-specialized macrophages. FTY720, an FDA-approved drug for multiple sclerosis inhibits TRPM7. However, FTY720 is a prodrug and its metabolite, FTY720-phosphate, is a potent agonist of sphingosine-1-phosphate (S1P) receptors. In this study, we test non-phosphorylatable FTY720 analogs, which are inert against S1PRs and well tolerated in vivo, for activity against TRPM7 and tissue bioavailability. Using patch clamp electrophysiology, we show that VPC01091.4 and AAL-149 block TRPM7 current at low micromolar concentrations. In culture, they act directly on macrophages to blunt LPS-induced inflammatory cytokine expression, though this likely occurrs through multiple molecular targets. We found that VPC01091.4 has significant and rapid accumulation in the brain and lungs, along with direct anti-inflammatory action on alveolar macrophages and microglia. Finally, using a mouse model of endotoxemia, we show VPC01091.4 to be an efficacious anti-inflammatory agent that arrests systemic inflammation in vivo. Together, these findings identify novel small molecule inhibitors that allow TRPM7 channel inhibition independent of S1P receptor targeting which demonstrate potent, polymodal anti-inflammatory activities ex vivo and in vivo.


Subject(s)
Fingolimod Hydrochloride , TRPM Cation Channels , Fingolimod Hydrochloride/pharmacology , Cyclopentanes , Phosphorylation
2.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662207

ABSTRACT

TRPM7, a TRP channel with ion conductance and kinase activities, has emerged as an attractive drug target for immunomodulation. Reverse genetics and cell biological studies have already established a key role for TRPM7 in the inflammatory activation of macrophages. Advancing TRPM7 as a viable molecular target for immunomodulation requires selective TRPM7 inhibitors with in vivo tolerability and efficacy. Such inhibitors have the potential to interdict inflammatory cascades mediated by systemic and tissue-specialized macrophages. FTY720, an FDA-approved drug for multiple sclerosis inhibits TRPM7. However, FTY720 is a prodrug and its metabolite, FTY720-phosphate, is a potent agonist of sphingosine 1-phosphate (S1P) receptors. In this study, we tested non-phosphorylatable FTY720 analogs, which are inert against S1PRs and well tolerated in vivo , for activity against TRPM7 and tissue bioavailability. Using patch clamp electrophysiology, we show that VPC01091.4 and AAL-149 block TRPM7 current at low micromolar concentrations. In culture, they act directly on macrophages to blunt LPS-induced inflammatory cytokine expression, an effect that is predominantly but not solely mediated by TRPM7. We found that VPC01091.4 has significant and rapid accumulation in the brain and lungs, along with direct anti-inflammatory action on alveolar macrophages and microglia. Finally, using a mouse model of endotoxemia, we show VPC01091.4 to be an efficacious anti-inflammatory agent that arrests systemic inflammation in vivo . Together, these findings identify novel small molecule inhibitors that allow TRPM7 channel inhibition independent of S1P receptor targeting. These inhibitors exhibit potent anti-inflammatory properties that are mediated by TRPM7 and likely other molecular targets that remain to be identified.

3.
Gene ; 877: 147548, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37279863

ABSTRACT

GPER is a seven transmembrane G-protein-coupled estrogen receptor that mediates rapid estrogen actions. Large volumes of data have revealed its association with clinicopathological variables in breast tumors, role in epidermal growth factor (EGF)-like effects of estrogen, potential as a therapeutic target or a prognostic marker, and involvement in endocrine resistance in the face of tamoxifen agonism. GPER cross-talks with estrogen receptor alpha (ERα) in cell culture models implicating its role in the physiology of normal or transformed mammary epithelial cells. However, discrepancies in the literature have obfuscated the nature of their relationship, its significance, and the underlying mechanism. The purpose of this study was to assess the relationship between GPER, and ERα in breast tumors, to understand the mechanistic basis, and to gauge its clinical significance. We mined The Cancer Genome Atlas (TCGA)-BRCA data to examine the relationship between GPER and ERα expression. GPER mRNA, and protein expression were analyzed in ERα-positive or -negative breast tumors from two independent cohorts using immunohistochemistry, western blotting, or RT-qPCR. The Kaplan-Meier Plotter (KM) was employed for survival analysis. The influence of estrogen in vivo was studied by examining GPER expression levels in estrus or diestrus mouse mammary tissues, and the impact of 17ß-estradiol (E2) administration in juvenile or adult mice. The effect of E2, or propylpyrazoletriol (PPT, an ERα agonist) stimulation on GPER expression was studied in MCF-7 and T47D cells, with or without tamoxifen or ERα knockdown. ERα-binding to the GPER locus was explored by analysing ChIP-seq data (ERP000380), in silico prediction of estrogen response elements, and chromatin immunoprecipitation (ChIP) assay. Clinical data revealed significant positive association between GPER and ERα expression in breast tumors. The median GPER expression in ERα-positive tumors was significantly higher than ERα-negative tumors. High GPER expression was significantly associated with longer overall survival (OS) of patients with ERα-positive tumors. In vivo experiments showed a positive effect of E2 on GPER expression. E2 induced GPER expression in MCF-7 and T47D cells; an effect mimicked by PPT. Tamoxifen or ERα-knockdown blocked the induction of GPER. Estrogen-mediated induction was associated with increased ERα occupancy in the upstream region of GPER. Furthermore, treatment with 17ß-estradiol or PPT significantly reduced the IC50 of the GPER agonist (G1)-mediated loss of MCF-7 or T47D cell viability. In conclusion, GPER is positively associated with ERα in breast tumors, and induced by estrogen-ERα signalling axis. Estrogen-mediated induction of GPER makes the cells more responsive to GPER ligands. More in-depth studies are warranted to establish the significance of GPER-ERα co-expression, and their interplay in breast tumor development, progression, and treatment.


Subject(s)
Estrogen Receptor alpha , Mammary Neoplasms, Animal , Animals , Female , Mice , Cell Line, Tumor , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/pharmacology , Gene Expression Regulation, Neoplastic , GTP-Binding Proteins/genetics , Mammary Neoplasms, Animal/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
4.
Mol Biol Rep ; 48(3): 2979-2983, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33677756

ABSTRACT

The G-protein coupled estrogen receptor (GPER) mediates short-term non-genomic effects of estrogen in diverse cell types and tissues. According to the NCBI nucleotide database, three variants of GPER are known. They are NM_001505.2 (GPER-v2), NM_001039966.1 (GPER-v3), and NM_001098201.1 (GPER-v4). Investigations on GPER expression are key to understand its physiological and pathological roles. However, most studies on GPER mRNA expression have considered total GPER mRNA expression regardless of the individual variants. The present study is motivated by a novel transcript observed in the UCSC Genome Browser (uc010ksd.1), which is annotated as GPER. The novel variant is similar to the known transcript variants of GPER in terms of the protein-coding sequence and the 3'UTR. However, it has a unique 5'UTR, which distinguishes it from other GPER variants. Using primers specific for uc010ksd.1, we have performed RT-PCR to show that the novel GPER transcript (hereafter referred to as GPER-v5) is expressed in human cancer cell lines, such as MCF-7, SW-620, COLO-205, and HT-29. Preliminary evidences indicate that GPER-v5 is a novel GPER mRNA variant. The expression of GPER-v5 in primary cells and tissues should be investigated before probing into its role and relevance in physiological and pathological conditions.


Subject(s)
Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Base Sequence , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Aging Cell ; 19(2): e13092, 2020 02.
Article in English | MEDLINE | ID: mdl-31858687

ABSTRACT

Post-translational modifications of histone tails play a crucial role in gene regulation. Here, we performed chromatin profiling by quantitative targeted mass spectrometry to assess all possible modifications of the core histones. We identified a bivalent combination, a dually marked H3K9me3/H3K14ac modification in the liver, that is significantly decreased in old hepatocytes. Subsequent sequential ChIP-Seq identified dually marked single nucleosome regions, with reduced number of sites and decreased signal in old livers, confirming mass spectrometry results. We detected H3K9me3 and H3K14ac bulk ChIP-Seq signal in reChIP nucleosome regions, suggesting a correlation between H3K9me3/H3K14ac bulk bivalent genomic regions and dually marked single nucleosomes. Histone H3K9 deacetylase Hdac3, as well as H3K9 methyltransferase Setdb1, found in complex Kap1, occupied both bulk and single nucleosome bivalent regions in both young and old livers, correlating to presence of H3K9me3. Expression of genes associated with bivalent regions in young liver, including those regulating cholesterol secretion and triglyceride synthesis, is upregulated in old liver once the bivalency is lost. Hence, H3K9me3/H3K14ac dually marked regions define a poised inactive state that is resolved with loss of one or both of the chromatin marks, which subsequently leads to change in gene expression.


Subject(s)
Aging/metabolism , Chromatin/metabolism , Histone Deacetylases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Liver/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Acetylation , Aging/physiology , Animals , Chromatin/physiology , Chromatin Immunoprecipitation Sequencing , Histone Deacetylases/genetics , Histone-Lysine N-Methyltransferase/genetics , Lipid Metabolism , Liver/physiology , Male , Mass Spectrometry , Methylation , Mice , Mice, Inbred C57BL , Nucleosomes/metabolism , Protein Processing, Post-Translational , Proteome/genetics , Proteome/metabolism , Tripartite Motif-Containing Protein 28/genetics
7.
Gene ; 614: 65-73, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28286086

ABSTRACT

GPER1, also known as GPR30, is a novel seven-transmembrane G-protein coupled estrogen receptor that mediates both short-term (non-genomic) and long-term (genomic) effects of estrogen in target cells and tissues. A substantial body of work over the last two decades has highlighted its therapeutic or prognostic utility. However, the clinical data on the expression of GPER1 in breast tissue is ambiguous. Analysis of TCGA RNAseq data revealed significantly lower mean expression of GPER1 mRNA in primary breast tumors compared to that in normal breast tissues. This provides support to the tumor suppressor role for GPER1. However, the mechanisms underlying the reduced expression are not completely understood. We analyzed the expression levels of GPER1 mRNA variants in MCF-7 and MDA-MB-231 cells by RT-PCR, and the methylation status of two CpG islands in the GPER1 locus by modified COBRA assays and bisulfite sequencing. Our results show that MCF-7 cells express higher levels of GPER1 mRNA variants compared to MDA-MB-231 cells. Modified COBRA assays revealed differential methylation in the upstream CpG island (upCpGi) that overlaps with the first exon of two GPER1 variants (GPER1v2 and v3) but not in the downstream CpG island (dnCpGi) that overlaps with the coding region common to all variants. Bisulfite sequencing results showed that the core upCpGi was hypo-methylated in both MCF-7 and MDA-MB-231 cells. However, eight CpGs in the 3' end of the upCpGi were hyper-methylated in MDA-MB-231 cells. 5-Azacytidine, a DNA methyltransferase inhibitor, induced the expression levels of GPER1 mRNA variants in MDA-MB-231 cells. Expression-methylation correlation analysis of TCGA breast cancer data revealed that methylation of CpGs in the regions flanking the upCpGi significantly correlated negatively with GPER1 mRNA expression. Taken together, our results demonstrate the role of DNA methylation in GPER1 repression, implicate the flanking regions (shore) of the upCpGi, and suggest a potential mechanism of GPER1 silencing in breast tumors.


Subject(s)
Breast Neoplasms/genetics , CpG Islands/genetics , DNA Methylation , Gene Silencing , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics , Azacitidine/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , DNA, Neoplasm/chemistry , DNA, Neoplasm/genetics , Enzyme Inhibitors/pharmacology , Exons/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Genetic Variation , Humans , MCF-7 Cells , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA/methods
8.
Data Brief ; 7: 1015-20, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27408914

ABSTRACT

Rabbit antiserum was generated against the N-terminus of human GPR30 followed by peptide affinity purification. In this article, the methodology used and validation data are presented. The peptide affinity purified polyclonal antibody specifically detects human GPR30 in ELISA and on western blots of total protein prepared from human breast cancer cell lines.

9.
Genom Data ; 5: 210-2, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26484257

ABSTRACT

(-)-Epigallocatechin-3-gallate (EGCG) is one of the most potent and the most studied green tea catechin. Reports on mechanisms of EGCG action and its cellular targets are plenty. Compelling evidences in the literature in favor of ER being one of its targets suggest that EGCG may have a significant impact on estrogen regulated gene expression. Despite the possible implications on breast cancer chemoprevention or therapy, this aspect of EGCG action has not been adequately investigated. In order to address this issue, we have obtained gene expression profiles of MCF-7 breast cancer cells treated with ethanol (vehicle control) and those treated with estrogen, EGCG or both, using microarrays. Here, we have presented in detail the design and execution of the microarray experiment, quality control checks and analysis of microarray data. The utility and importance of the data generated in this work have been discussed in the context of the background literature. Our data is available in the Gene Expression Omnibus (GEO) database with the identifier GSE56245.

SELECTION OF CITATIONS
SEARCH DETAIL
...