Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38234792

ABSTRACT

Purpose: The CXCL12-CXCR4 chemokine axis plays a significant role in modulating T-cell infiltration into the pancreatic tumor microenvironment. Despite promising preclinical findings, clinical trials combining inhibitors of CXCR4 (AMD3100/BL-8040) and anti-programmed death 1/ligand1 (anti-PD1/PD-L1) have failed to improve outcomes. Experimental Design: We utilized a novel ex vivo autologous patient-derived immune/organoid (PDIO) co-culture system using human peripheral blood mononuclear cells and patient derived tumor organoids, and in vivo the autochthonous LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) pancreatic cancer mouse model to interrogate the effects of either monotherapy or all combinations of gemcitabine, AMD3100, and anit-PD1 on CD8+ T cell activation and survival. Results: We demonstrate that disruption of the CXCL12-CXCR4 axis using AMD3100 leads to increased migration and activation of CD8+ T-cells. In addition, when combined with the cytotoxic chemotherapy gemcitabine, CXCR4 inhibition further potentiated CD8+ T-cell activation. We next tested the combination of gemcitabine, CXCR4 inhibition, and anti-PD1 in the KPC pancreatic cancer mouse model and demonstrate that this combination markedly impacted the tumor immune microenvironment by increasing infiltration of natural killer cells, the ratio of CD8+ to regulatory T-cells, and tumor cell death while decreasing tumor cell proliferation. Moreover, this combination extended survival in KPC mice. Conclusions: These findings suggest that combining gemcitabine with CXCR4 inhibiting agents and anti-PD1 therapy controls tumor growth by reducing immunosuppression and potentiating immune cell activation and therefore may represent a novel approach to treating pancreatic cancer.

2.
Clin Cancer Res ; 23(7): 1670-1678, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28373365

ABSTRACT

Targeted therapies and immunotherapy have changed the face of multiple solid malignancies, including metastatic melanoma and lung cancer, but no such therapies exist for pancreatic ductal adenocarcinoma (PDAC) despite the knowledge of key mutations and an increasing understanding of the tumor microenvironment. Until now, most clinical studies have not been biomarker driven in this highly immunosuppressive and heterogeneous cancer. Ongoing basic and translational studies are better classifying the disease in hopes of identifying critical pathways that distinguish the unique PDAC subtypes, which will lead to personalized therapies. In this review, we discuss the current treatment options for metastatic pancreatic cancer and highlight current ongoing clinical trials, which aim to target the stroma and the immune microenvironment either alone or in combination with standard chemotherapy. Identifying biomarkers and key resistance pathways and targeting these pathways in a personalized manner in combination with chemotherapy are likely to yield a more immediate and durable clinical benefit. Clin Cancer Res; 23(7); 1670-8. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Neoplasms, Second Primary/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Clinical Trials as Topic , Humans , Immunotherapy , Neoplasm Metastasis , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/pathology , Precision Medicine , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...