Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 71(7): 1551-1559, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28664782

ABSTRACT

A fast high-resolution screening method for reactive surfaces is presented. Atomic force microscopy (AFM) and surface-enhanced Raman spectroscopy (SERS) are combined in one method in order to be able to obtain both morphological and chemical information about processes at a surface. In order to accurately align the AFM and SERS images, an alignment pattern on the substrate material is exploited. Subsequent SERS scans with sub-micron resolution are recorded in 30 min per scan for an area of 100 × 100 µm2 and are accompanied by morphological information, supplied by a fast AFM, of the same area. Hence, a complete reactivity overview is obtained within several hours with only a monolayer of reactant. To demonstrate the working principle of this method, a SERS substrate containing the alignment pattern and silver nanoparticle aggregates as catalytic sites is prepared to study the photo-catalytic reduction of p-nitrothiophenol ( p-NTP).

2.
Opt Express ; 23(23): 30318-28, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26698511

ABSTRACT

Today, vertical cavity surface emitting lasers (VCSELs) are used in many high-end applications, for which the laser lifetime is a critical parameter. Changes in the spatial distribution of the various emission modes of the VCSEL can be used as an early sign of device degradation, enhancing the speed and detail of failure mode analysis. We have developed a ferrule-top combined atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM) probe that can be used to analyze the transverse mode pattern of the 850 nm radiation at a <200 nm spatial resolution. During accelerated lifetime testing, the newly developed method shows that small local changes in the optical output can already be detected before any sign of device degradation is observed with conventional methods.

3.
ChemCatChem ; 6(12): 3342-3346, 2014 Dec.
Article in English | MEDLINE | ID: mdl-27158273

ABSTRACT

Heterogeneous catalysis is a surface phenomenon. Yet, though the catalysis itself takes place on surfaces, the reactants and products rapidly take the form of another physical state, as either a liquid or a gas. Catalytic reactions within a self-assembled monolayer are confined within two dimensions, as the molecules involved do not leave the surface. Surface-enhanced Raman spectroscopy is an ideal technique to probe these self-assembled monolayers as it gives molecular information in a measured volume limited to the surface. We show how surface-enhanced Raman spectroscopy can be used to determine the reaction kinetics of a two-dimensional reaction. As a proof of principle, we study the photocatalytic reduction of p-nitrothiophenol. A study of the reaction rate and dilution effects leads to the conclusion that a dimerization must take place as one of the reaction steps.

4.
Appl Spectrosc ; 66(10): 1179-85, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23031701

ABSTRACT

Raman spectroscopy is one of the major characterization methods employed over the last few decades as a nondestructive technique for the study of heterogeneous catalysts and related catalytic reactions. However, the promise of practical applicability on millimeter-sized catalyst bodies, such as extrudates, has not been fulfilled completely. Large fluorescence signals and the highly scattering nature of the extrudates often hamper its practical usage. Different approaches to overcome this problem were examined, including the use of time-resolved Raman spectroscopy (TRRS), spatially offset Raman spectroscopy (SORS), surface-enhanced Raman spectroscopy (SERS), and combinations of these techniques. This paper demonstrates that especially TRRS can provide chemical information at depth within catalyst bodies, overcoming fluorescence background signals and allowing for visualization of analytes at different depths. It also examines the application of time-resolved SERS within catalyst bodies to gain insight into localized activity. With these options a wider applicability of Raman spectroscopy for industrial catalysis research becomes within reach.

5.
Nat Nanotechnol ; 7(9): 583-6, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22902959

ABSTRACT

Heterogeneous catalysts play a pivotal role in the chemical industry, but acquiring molecular insights into functioning catalysts remains a significant challenge. Recent advances in micro-spectroscopic approaches have allowed spatiotemporal information to be obtained on the dynamics of single active sites and the diffusion of single molecules. However, these methods lack nanometre-scale spatial resolution and/or require the use of fluorescent labels. Here, we show that time-resolved tip-enhanced Raman spectroscopy can monitor photocatalytic reactions at the nanoscale. We use a silver-coated atomic force microscope tip to both enhance the Raman signal and to act as the catalyst. The tip is placed in contact with a self-assembled monolayer of p-nitrothiophenol molecules adsorbed on gold nanoplates. A photocatalytic reduction process is induced at the apex of the tip with green laser light, while red laser light is used to monitor the transformation process during the reaction. This dual-wavelength approach can also be used to observe other molecular effects such as monolayer diffusion.


Subject(s)
Metal Nanoparticles/chemistry , Nanotechnology , Nitroso Compounds/chemistry , Spectrum Analysis, Raman/methods , Catalysis , Catalytic Domain , Diffusion , Gold/chemistry , Lasers , Microscopy, Atomic Force
6.
Chem Commun (Camb) ; 48(12): 1742-4, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22218373

ABSTRACT

The integration of Atomic Force Microscopy and Raman spectroscopy is tested for use in heterogeneous catalysis research by a preliminary investigation, the photo-oxidation of rhodamine-6G. Temperature and atmosphere were varied in an in situ cell to show compatibility with realistic reaction conditions.

7.
Anal Chem ; 78(9): 3152-7, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16643007

ABSTRACT

Ultraviolet resonance Raman spectroscopy is carried out using a continuous wave frequency-doubled argon ion laser operated at 229, 244, and 257 nm in order to characterize the overtones and combination bands for several classes of organic compounds in liquid solutions. Contrary to what is generally anticipated, for molecules such as pyrene and anthracene, strong overtones and combination bands can show up; it is demonstrated that their intensity depends critically on the applied laser wavelength. If the excitation wavelength corresponds with a purely electronic transition--this applies to a good approximation for 244-nm excitation in the case of pyrene and for 257-nm excitation in the case of anthracene--mostly fundamental vibrations (up to 1700 cm(-1)) are observed. Overtones and combination bands are detected but are rather weak. However, if the laser overlaps with the vibronic region--as holds for 229- and 257-nm excitation for pyrene and 244-nm excitation for anthracene--very strong bands are found in the region 1700-3400 cm(-1). As illustrated for pyrene at 257 nm, all these bands can be assigned to first overtones or binary combinations of fundamental vibrations. Their intensity distribution can roughly be simulated by multiplying the relative intensities of the fundamental bands. Significant bands can also be found in the region 3400-5000 cm(-1), corresponding with second overtones and ternary combinations. It is shown that these findings are not restricted to planar and rigid molecules with high symmetry. Substituted pyrenes exhibit similar effects, and relatively strong overtones are also observed for adenosine monophosphate and for abietic acid. The reasons for these observations are discussed, as well as the potential applicability for analytical purposes.

8.
Appl Spectrosc ; 59(3): 267-74, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15901305

ABSTRACT

Raman spectroscopy is applied for characterizing paintable displays. Few other options than Raman spectroscopy exist for doing so because of the liquid nature of functional materials. The challenge is to develop a method that can be used for estimating the composition of a single display cell on the basis of the collected three-dimensional Raman spectra. A classical least squares (CLS) model is used to model the measured spectra. It is shown that spectral preprocessing is a necessary and critical step for obtaining a good CLS model and reliable compositional profiles. Different kinds of preprocessing are explained. For each data set the type and amount of preprocessing may be different. This is shown using two data sets measured on essentially the same type of display cell, but under different experimental conditions. For model validation three criteria are introduced: mean sum of squares of residuals, percentage of unexplained information (PUN), and average residual curve. It is shown that the decision about the best combination of preprocessing techniques cannot be based only on overall error indicators (such as PUN). In addition, local residual analysis must be done and the feasibility of the extracted profiles should be taken into account.


Subject(s)
Algorithms , Data Display , Equipment Failure Analysis/methods , Materials Testing/methods , Methacrylates/analysis , Models, Chemical , Spectrum Analysis, Raman/methods , Computer Simulation , Computer Terminals , Crystallography/methods , Linear Models , Models, Statistical , Stilbenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL