Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Transl Med ; 15(711): eadd9990, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37647386

ABSTRACT

Myeloid cells in the tumor microenvironment (TME) can exist in immunosuppressive and immunostimulatory states that impede or promote antitumor immunity, respectively. Blocking suppressive myeloid cells or increasing stimulatory cells to enhance antitumor immune responses is an area of interest for therapeutic intervention. Triggering receptor expressed on myeloid cells-1 (TREM1) is a proinflammatory receptor that amplifies immune responses. TREM1 is expressed on neutrophils, subsets of monocytes and tissue macrophages, and suppressive myeloid populations in the TME, including tumor-associated neutrophils, monocytes, and tumor-associated macrophages. Depletion or inhibition of immunosuppressive myeloid cells, or stimulation by TREM1-mediated inflammatory signaling, could be used to promote an immunostimulatory TME. We developed PY159, an afucosylated humanized anti-TREM1 monoclonal antibody with enhanced FcγR binding. PY159 is a TREM1 agonist that induces signaling, leading to up-regulation of costimulatory molecules on monocytes and macrophages, production of proinflammatory cytokines and chemokines, and enhancement of T cell activation in vitro. An antibody against mouse TREM1, PY159m, promoted antitumor efficacy in syngeneic mouse tumor models. These results suggest that PY159-mediated agonism of TREM1 on tumoral myeloid cells can promote a proinflammatory TME and offer a promising strategy for immunotherapy.


Subject(s)
Monocytes , Myeloid Cells , Animals , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Disease Models, Animal , Immunosuppressive Agents , Macrophages , Triggering Receptor Expressed on Myeloid Cells-1
2.
Cell Rep ; 37(3): 109844, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686340

ABSTRACT

Converting checkpoint inhibitor (CPI)-resistant individuals to being responsive requires identifying suppressive mechanisms. We identify TREM2+ tumor-associated macrophages (TAMs) as being correlated with exhausted CD8+ tumor-infiltrating lymphocytes (TILs) in mouse syngeneic tumor models and human solid tumors of multiple histological types. Fc domain-enhanced anti-TREM2 monoclonal antibody (mAb) therapy promotes anti-tumor immunity by elimination and modulation of TAM populations, which leads to enhanced CD8+ TIL infiltration and effector function. TREM2+ TAMs are most enriched in individuals with ovarian cancer, where TREM2 expression corresponds to disease grade accompanied by worse recurrence-free survival. In an aggressive orthotopic ovarian cancer model, anti-TREM2 mAb therapy drives potent anti-tumor immunity. These results highlight TREM2 as a highly attractive target for immunotherapy modulation in individuals who are refractory to CPI therapy and likely have a TAM-rich tumor microenvironment.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Membrane Glycoproteins/antagonists & inhibitors , Neoplasms/drug therapy , Receptors, Immunologic/antagonists & inhibitors , Tumor-Associated Macrophages/drug effects , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Coculture Techniques , Drug Resistance, Neoplasm , Female , HEK293 Cells , Humans , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Membrane Glycoproteins/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Tumor Cells, Cultured , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
3.
Proc Natl Acad Sci U S A ; 114(21): E4223-E4232, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28484017

ABSTRACT

Rational modulation of the immune response with biologics represents one of the most promising and active areas for the realization of new therapeutic strategies. In particular, the use of function blocking monoclonal antibodies targeting checkpoint inhibitors such as CTLA-4 and PD-1 have proven to be highly effective for the systemic activation of the human immune system to treat a wide range of cancers. Ipilimumab is a fully human antibody targeting CTLA-4 that received FDA approval for the treatment of metastatic melanoma in 2011. Ipilimumab is the first-in-class immunotherapeutic for blockade of CTLA-4 and significantly benefits overall survival of patients with metastatic melanoma. Understanding the chemical and physical determinants recognized by these mAbs provides direct insight into the mechanisms of pathway blockade, the organization of the antigen-antibody complexes at the cell surface, and opportunities to further engineer affinity and selectivity. Here, we report the 3.0 Å resolution X-ray crystal structure of the complex formed by ipilimumab with its human CTLA-4 target. This structure reveals that ipilimumab contacts the front ß-sheet of CTLA-4 and intersects with the CTLA-4:Β7 recognition surface, indicating that direct steric overlap between ipilimumab and the B7 ligands is a major mechanistic contributor to ipilimumab function. The crystallographically observed binding interface was confirmed by a comprehensive cell-based binding assay against a library of CTLA-4 mutants and by direct biochemical approaches. This structure also highlights determinants responsible for the selectivity exhibited by ipilimumab toward CTLA-4 relative to the homologous and functionally related CD28.


Subject(s)
Antigen-Antibody Complex/metabolism , Antineoplastic Agents, Immunological/pharmacology , Binding Sites, Antibody/immunology , CTLA-4 Antigen/antagonists & inhibitors , Ipilimumab/pharmacology , Melanoma/drug therapy , Biological Factors/pharmacology , CTLA-4 Antigen/immunology , Cell Line , Crystallography, X-Ray , HEK293 Cells , Humans , Immunotherapy/methods , Protein Binding , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...