Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Res ; 257: 1-14, 2023 07.
Article in English | MEDLINE | ID: mdl-36709920

ABSTRACT

Phosphoglucomutase 1 (PGM1) deficiency is recognized as the third most common N-linked congenital disorders of glycosylation (CDG) in humans. Affected individuals present with liver, musculoskeletal, endocrine, and coagulation symptoms; however, the most life-threatening complication is the early onset of dilated cardiomyopathy (DCM). Recently, we discovered that oral D-galactose supplementation improved liver disease, endocrine, and coagulation abnormalities, but does not alleviate the fatal cardiomyopathy and the associated myopathy. Here we report on left ventricular ejection fraction (LVEF) in 6 individuals with PGM1-CDG. LVEF was pathologically low in most of these individuals and varied between 10% and 65%. To study the pathobiology of the cardiac disease observed in PGM1-CDG, we constructed a novel cardiomyocyte-specific conditional Pgm2 gene (mouse ortholog of human PGM1) knockout (Pgm2 cKO) mouse model. Echocardiography studies corroborated a DCM phenotype with significantly reduced ejection fraction and left ventricular dilation similar to those seen in individuals with PGM1-CDG. Histological studies demonstrated excess glycogen accumulation and fibrosis, while ultrastructural analysis revealed Z-disk disarray and swollen/fragmented mitochondria, which was similar to the ultrastructural pathology in the cardiac explant of an individual with PGM1-CDG. In addition, we found decreased mitochondrial function in the heart of KO mice. Transcriptomic analysis of hearts from mutant mice demonstrated a gene signature of DCM. Although proteomics revealed only mild changes in global protein expression in left ventricular tissue of mutant mice, a glycoproteomic analysis unveiled broad glycosylation changes with significant alterations in sarcolemmal proteins including different subunits of laminin-211, which was confirmed by immunoblot analyses. Finally, augmentation of PGM1 in KO mice via AAV9-PGM1 gene replacement therapy prevented and halted the progression of the DCM phenotype.


Subject(s)
Cardiomyopathy, Dilated , Glycogen Storage Disease , Humans , Animals , Mice , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/therapy , Stroke Volume , Ventricular Function, Left
2.
Physiol Rep ; 10(23): e15518, 2022 12.
Article in English | MEDLINE | ID: mdl-36461654

ABSTRACT

Intrauterine growth restriction (IUGR) and exposure to a high-fat diet (HFD) independently increase the risk of cardiovascular disease (CVD) and hyperlipidemia. In our previous studies, IUGR increased blood pressure and promoted vascular remodeling and stiffness in early life, a finding that persisted and was augmented by a maternal HFD through postnatal day (PND) 60. The impact of these findings with aging and the development of hyperlipidemia and atherosclerosis remain unknown. We hypothesized that the previously noted impact of IUGR on hypertension, vascular remodeling, and hyperlipidemia would persist. Adult female rats were fed either a regular diet (RD) or high fat diet (HFD) prior to conception through lactation. IUGR was induced by uterine artery ligation. Offspring were weaned to either RD or HFD through PND 365. For both control (C) and IUGR (I) and rats, this resulted in the following six groups per sex: offspring from RD dams weaned to an RD (CRR and IRR), or offspring from HFD dams weaned to either an RD (CHR and IHR) or to an HFD (CHH and IHH). IHH male and female rats had increased large artery stiffness, a suggestion of fatty streaks in the aorta, and persistent decreased elastin and increased collagen in the aorta and carotid arteries. Post-weaning HFD intake increased blood lipids regardless of IUGR status. IUGR increased HFD-induced mortality. We speculate that HFD-induced risk of CVD and mortality is potentiated by developmental programming of the ECM.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Female , Male , Rats , Animals , Humans , Fetal Growth Retardation/etiology , Diet, High-Fat/adverse effects , Vascular Remodeling , Uterine Artery , Atherosclerosis/etiology
3.
Am J Physiol Heart Circ Physiol ; 317(2): H424-H433, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31225985

ABSTRACT

Intrauterine growth restriction (IUGR) and maternal high-fat diet (HFD) independently predispose offspring to hypertension. In a rat model, IUGR more so than maternal HFD increases arterial stiffness with vascular remodeling as early as postnatal day (PND) 21. The trajectory of such early vascular changes remains unknown. We hypothesized that IUGR would increase blood pressure (BP), arterial stiffness, and markers of ongoing detrimental vascular remodeling in adult rats exposed to a maternal HFD regardless of weaning diet. Adult female rats were fed either a regular diet (RD) or an HFD before mating through lactation. IUGR was induced by uterine artery ligation. Offspring were weaned to either a RD or HFD through PND 60. For both control and IUGR rats, this design resulted in the following three diet groups: offspring from RD dams weaned to a RD and offspring from HFD dams weaned to a RD or to an HFD (IHH). In both males and females, only IHH increased systolic BP, but IUGR and HFD both alone and in combination increased arterial stiffness. Aortas contained fewer but thicker elastin bands in IHH rats and IUGR offspring from dams fed an HFD and weaned to a regular diet. IHH increased aortic lysl oxidase protein. In summary, the PND 21 rat mediators of vascular remodeling from IUGR and maternal HFD normalize by PND 60 while changes in elastin and arterial stiffness persist. We speculate that the longer-term risk of hypertension from dietary mediators is augmented by underlying IUGR-induced structural changes to the extracellular matrix.NEW & NOTEWORTHY We report that a combined insult of intrauterine growth restriction and maternal high-fat diet increases the risk of early cardiovascular pathology both independently and in conjunction with a continued high-fat diet in offspring.


Subject(s)
Aorta, Abdominal/physiopathology , Diet, High-Fat , Fetal Growth Retardation/physiopathology , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Vascular Remodeling , Vascular Stiffness , Age Factors , Animals , Aorta, Abdominal/metabolism , Arterial Pressure , Biomarkers/metabolism , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Fetal Growth Retardation/metabolism , Male , Nutritional Status , Pregnancy , Rats, Sprague-Dawley , Sex Factors
4.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L208-L216, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27913427

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a chronic lung injury characterized by impaired alveologenesis that may persist into adulthood. Rat models of BPD using varying degrees of hyperoxia to produce injury either cause early mortality or spontaneously recover following removal of the inciting stimulus, thus limiting clinical relevance. We sought to refine an established rat model induced by exposure to 60% O2 from birth by following hyperoxia with intermittent hypoxia (IH). Rats exposed from birth to air or 60% O2 until day 14 were recovered in air with or without IH (FIO2 = 0.10 for 10 min every 6 h) until day 28 Animals exposed to 60% O2 and recovered in air had no evidence of abnormal lung morphology on day 28 or at 10-12 wk. In contrast, 60% O2-exposed animals recovered in IH had persistently increased mean chord length, more dysmorphic septal crests, and fewer peripheral arteries. Recovery in IH also increased pulmonary vascular resistance, Fulton index, and arterial wall thickness. IH-mediated abnormalities in lung structure (but not pulmonary hypertension) persisted when reexamined at 10-12 wk, accompanied by increased pulmonary vascular reactivity and decreased exercise tolerance. Increased mean chord length secondary to IH was prevented by treatment with a peroxynitrite decomposition catalyst [5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphyrin iron (III) chloride, 30 mg/kg/day, days 14-28], an effect accompanied by fewer inflammatory cells. We conclude that IH during recovery from hyperoxia-induced injury prevents recovery of alveologenesis and leads to changes in lung and pulmonary vascular function lasting into adulthood, thus more closely mimicking contemporary BPD.


Subject(s)
Bronchopulmonary Dysplasia/complications , Bronchopulmonary Dysplasia/pathology , Hyperoxia/complications , Hypoxia/complications , Lung Injury/complications , Pulmonary Alveoli/growth & development , Pulmonary Alveoli/pathology , Animals , Animals, Newborn , Biomarkers/metabolism , Catalysis , Disease Models, Animal , Female , Hyperoxia/pathology , Hypertension, Pulmonary/complications , Hypoxia/pathology , Lung Injury/pathology , Male , Metalloporphyrins/pharmacology , Peroxynitrous Acid/metabolism , Physical Conditioning, Animal , Pneumonia/complications , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...