Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(3): e0008423, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37070986

ABSTRACT

Immune imprinting is a driver known to shape the anti-hemagglutinin (HA) antibody landscape of individuals born within the same birth cohort. With the HA and neuraminidase (NA) proteins evolving at different rates under immune selection pressures, anti-HA and anti-NA antibody responses since childhood influenza virus infections have not been evaluated in parallel at the individual level. This is partly due to the limited knowledge of changes in NA antigenicity, as seasonal influenza vaccines have focused on generating neutralizing anti-HA antibodies against HA antigenic variants. Here, we systematically characterized the NA antigenic variants of seasonal A(H1N1) viruses from 1977 to 1991 and completed the antigenic profile of N1 NAs from 1977 to 2015. We identified that NA proteins of A/USSR/90/77, A/Singapore/06/86, and A/Texas/36/91 were antigenically distinct and mapped N386K as a key determinant of the NA antigenic change from A/USSR/90/77 to A/Singapore/06/86. With comprehensive panels of HA and NA antigenic variants of A(H1N1) and A(H1N1)pdm09 viruses, we determined hemagglutinin inhibition (HI) and neuraminidase inhibition (NI) antibodies from 130 subjects born between 1950 and 2015. Age-dependent imprinting was observed for both anti-HA and anti-NA antibodies, with the peak HI and NI titers predominantly detected from subjects at 4 to 12 years old during the year of initial virus isolation, except the age-independent anti-HA antibody response against A(H1N1)pdm09 viruses. More participants possessed antibodies that reacted to multiple antigenically distinct NA proteins than those with antibodies that reacted to multiple antigenically distinct HA proteins. Our results support the need to include NA proteins in seasonal influenza vaccine preparations. IMPORTANCE Seasonal influenza vaccines have aimed to generate neutralizing anti-HA antibodies for protection since licensure. More recently, anti-NA antibodies have been established as an additional correlate of protection. While HA and NA antigenic changes occurred discordantly, the anti-HA and anti-NA antibody profiles have rarely been analyzed in parallel at the individual level, due to the limited knowledge on NA antigenic changes. By characterizing NA antigenic changes of A(H1N1) viruses, we determined the anti-HA and anti-NA antibody landscape against antigenically distinct A(H1N1) and A(H1N1)pdm09 viruses using sera of 130 subjects born between 1950 and 2015. We observed age-dependent imprinting of both anti-HA and anti-NA antibodies against strains circulated during the first decade of life. A total of 67.7% (88/130) and 90% (117/130) of participants developed cross-reactive antibodies to multiple HA and NA antigens at titers ≥1:40. With slower NA antigenic changes and cross-reactive anti-NA antibody responses, including NA protein in influenza vaccine preparation may enhance vaccine efficacy.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Child , Child, Preschool , Hemagglutinins , Antibody Formation , Neuraminidase/genetics , Antibodies, Viral , Antibodies, Neutralizing , Hemagglutinin Glycoproteins, Influenza Virus/genetics
2.
Emerg Microbes Infect ; 12(1): e2161422, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36594261

ABSTRACT

The rapid evolution of SARS-CoV-2 Omicron sublineages mandates a better understanding of viral replication and cross-neutralization among these sublineages. Here we used K18-hACE2 mice and primary human airway cultures to examine the viral fitness and antigenic relationship among Omicron sublineages. In both K18-hACE2 mice and human airway cultures, Omicron sublineages exhibited a replication order of BA.5 ≥ BA.2 ≥ BA.2.12.1 > BA.1; no difference in body weight loss was observed among different sublineage-infected mice. The BA.1-, BA.2-, BA.2.12.1-, and BA.5-infected mice developed distinguishable cross-neutralizations against Omicron sublineages, but exhibited little neutralization against the index virus (i.e. USA-WA1/2020) or the Delta variant. Surprisingly, the BA.5-infected mice developed higher neutralization activity against heterologous BA.2 and BA.2.12.1 than that against homologous BA.5; serum neutralizing titres did not always correlate with viral replication levels in infected animals. Our results revealed a distinct antigenic cartography of Omicron sublineages and support the bivalent vaccine approach.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Mice , SARS-CoV-2/genetics , Melphalan , Antibodies, Viral , Antibodies, Neutralizing
3.
Nat Commun ; 13(1): 4350, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896523

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Neutralization Tests , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
4.
PLoS Negl Trop Dis ; 8(10): e3262, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25357248

ABSTRACT

West Nile virus (WNV) has been maintained in North America in enzootic cycles between mosquitoes and birds since it was first described in North America in 1999. House sparrows (HOSPs; Passer domesticus) are a highly competent host for WNV that have contributed to the rapid spread of WNV across the U.S.; however, their competence has been evaluated primarily using an early WNV strain (NY99) that is no longer circulating. Herein, we report that the competence of wild HOSPs for the NY99 strain has decreased significantly over time, suggesting that HOSPs may have developed resistance to this early WNV strain. Moreover, recently isolated WNV strains generate higher peak viremias and mortality in contemporary HOSPs compared to NY99. These data indicate that opposing selective pressures in both the virus and avian host have resulted in a net increase in the level of host competence of North American HOSPs for currently circulating WNV strains.


Subject(s)
Biological Evolution , Sparrows/virology , West Nile virus/classification , Animals , Genotype , North America , Viremia/transmission , Virus Replication , West Nile virus/genetics
5.
Emerg Infect Dis ; 20(2): 272-5, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24447818

ABSTRACT

Molecular analysis of West Nile virus (WNV) isolates obtained during a 2010 outbreak in Maricopa County, Arizona, USA, demonstrated co-circulation of 3 distinct genetic variants, including strains with novel envelope protein mutations. These results highlight the continuing evolution of WNV in North America and the current complexity of WNV dispersal and transmission.


Subject(s)
Culex/virology , Disease Outbreaks , Insect Vectors/virology , Viral Envelope Proteins/genetics , West Nile Fever/epidemiology , West Nile virus/genetics , Animals , Arizona/epidemiology , Biological Evolution , Cluster Analysis , Genetic Variation , Phylogeny , Viral Envelope Proteins/classification , West Nile Fever/virology , West Nile virus/classification , West Nile virus/isolation & purification
6.
Int J Environ Res Public Health ; 10(10): 5111-29, 2013 Oct 16.
Article in English | MEDLINE | ID: mdl-24135819

ABSTRACT

West Nile virus (WNV) was introduced to New York in 1999 and rapidly spread throughout North America and into parts of Central and South America. Displacement of the original New York (NY99) genotype by the North America/West Nile 2002 (NA/WN02) genotype occurred in 2002 with subsequent identification of a novel genotype in 2003 in isolates collected from the southwestern Unites States region (SW/WN03 genotype). Both genotypes co-circulate to date. Subsequent WNV surveillance studies have confirmed additional genotypes in the United States that have become extinct due to lack of a selective advantage or stochastic effect; however, the dynamic emergence, displacement, and extinction of multiple WNV genotypes in the US from 1999-2012 indicates the continued evolution of WNV in North America.


Subject(s)
Biological Evolution , Molecular Epidemiology , West Nile Fever/epidemiology , West Nile virus/genetics , Genotype , North America , West Nile Fever/virology
7.
Emerg Infect Dis ; 19(9): 1418-27, 2013.
Article in English | MEDLINE | ID: mdl-23965756

ABSTRACT

We investigated the genetics and evolution of West Nile virus (WNV) since initial detection in the United States in 1999 on the basis of continual surveillance studies in the Houston, Texas, USA, metropolitan area (Harris County) as a surrogate model for WNV evolution on a national scale. Full-length genomic sequencing of 14 novel 2010-2012 WNV isolates collected from resident birds in Harris County demonstrates emergence of 4 independent genetic groups distinct from historical strains circulating in the greater Houston region since 2002. Phylogenetic and geospatial analyses of the 2012 WNV isolates indicate closer genetic relationship with 2003-2006 Harris County isolates than more recent 2007-2011 isolates. Inferred monophyletic relationships of these groups with several 2006-2009 northeastern US isolates supports potential introduction of a novel WNV strain in Texas since 2010. These results emphasize the need to maintain WNV surveillance activities to better understand WNV transmission dynamics in the United States.


Subject(s)
West Nile Fever/epidemiology , West Nile virus/genetics , Amino Acid Substitution , Disease Outbreaks , Evolution, Molecular , Genetic Variation , Genome, Viral , Humans , Incidence , Phylogeny , Phylogeography , RNA, Viral , Texas/epidemiology , West Nile Fever/transmission , West Nile virus/isolation & purification
8.
Virology ; 436(1): 75-80, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23141421

ABSTRACT

Confirmed clinical and veterinary cases of West Nile virus (WNV) infection in Mexico remain restricted to northern Mexico, supporting a unidirectional transmission model from the US into Mexico. Full-length genomic sequencing of nine WNV isolates obtained from Culex spp. mosquito pools in El Paso, Texas (n=7) and Cuidad Juarez, Mexico (n=2) from 2005 to 2010 demonstrates the co-circulation of three independent genetic groups, two of which belong to the southwestern (SW/WN03) genotype and the other to the North American (NA/WN02) genotype. These results indicate ongoing dynamic circulation of WNV between the United States and Mexico.


Subject(s)
Culex/virology , West Nile Fever/transmission , West Nile virus/genetics , Amino Acid Substitution , Animals , Genetic Variation , Genotype , Humans , Insect Vectors/virology , Mexico , Phylogeny , Sequence Analysis, RNA , Texas , United States , West Nile Fever/veterinary , West Nile Fever/virology , West Nile virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...