Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 67(10): e0048223, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37724886

ABSTRACT

Antimicrobial resistance has made a sizeable impact on public health and continues to threaten the effectiveness of antibacterial therapies. Novel bacterial topoisomerase inhibitors (NBTIs) are a promising class of antibacterial agents with a unique binding mode and distinct pharmacology that enables them to evade existing resistance mechanisms. The clinical development of NBTIs has been plagued by several issues, including cardiovascular safety. Herein, we report a sub-series of tricyclic NBTIs bearing an amide linkage that displays promising antibacterial activity, potent dual-target inhibition of DNA gyrase and topoisomerase IV (TopoIV), as well as improved cardiovascular safety and metabolic profiles. These amide NBTIs induced both single- and double-strand breaks in pBR322 DNA mediated by Staphylococcus aureus DNA gyrase, in contrast to prototypical NBTIs that cause only single-strand breaks. Unexpectedly, amides 1a and 1b targeted human topoisomerase IIα (TOP2α) causing both single- and double-strand breaks in pBR322 DNA, and induced DNA strand breaks in intact human leukemia K562 cells. In addition, anticancer drug-resistant K/VP.5 cells containing decreased levels of TOP2α were cross-resistant to amides 1a and 1b. Together, these results demonstrate broad spectrum antibacterial properties of selected tricyclic NBTIs, desirable safety profiles, an unusual ability to induce DNA double-stranded breaks, and activity against human TOP2α. Future work will be directed toward optimization and development of tricyclic NBTIs with potent and selective activity against bacteria. Finally, the current results may provide an additional avenue for development of selective anticancer agents.


Subject(s)
DNA Gyrase , Topoisomerase Inhibitors , Humans , Topoisomerase Inhibitors/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/metabolism , DNA , Amides/pharmacology , Topoisomerase II Inhibitors/pharmacology , Microbial Sensitivity Tests
2.
ACS Med Chem Lett ; 13(6): 955-963, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35707162

ABSTRACT

Antibacterial resistance continues its devastation of available therapies. Novel bacterial topoisomerase inhibitors (NBTIs) offer one solution to this critical issue. Two series of amine NBTIs bearing tricyclic DNA-binding moieties as well as amide NBTIs with a bicyclic DNA-binding moiety were synthesized and evaluated against methicillin-resistant Staphylococcus aureus (MRSA). Additionally, these compounds and a series of bicyclic amine analogues displayed high activity against susceptible and drug-resistant Neisseria gonorrhoeae, expanding the spectrum of these dioxane-linked NBTIs.

3.
J Med Chem ; 64(20): 15214-15249, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34614347

ABSTRACT

Novel bacterial topoisomerase inhibitors (NBTIs) are among the most promising new antibiotics in preclinical/clinical development. We previously reported dioxane-linked NBTIs with potent antistaphylococcal activity and reduced hERG inhibition, a key safety liability. Herein, polarity-focused optimization enabled the delineation of clear structure-property relationships for both microsomal metabolic stability and hERG inhibition, resulting in the identification of lead compound 79. This molecule demonstrates potent antibacterial activity against diverse Gram-positive pathogens, inhibition of both DNA gyrase and topoisomerase IV, a low frequency of resistance, a favorable in vitro cardiovascular safety profile, and in vivo efficacy in a murine model of methicillin-resistant Staphylococcus aureus infection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dioxanes/pharmacology , Enzyme Inhibitors/pharmacology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/metabolism , Dioxanes/chemical synthesis , Dioxanes/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...