Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 10: 1962, 2019.
Article in English | MEDLINE | ID: mdl-31555260

ABSTRACT

Anti-tumor immunity is limited by a number of factors including the lack of fully activated T-cells, insufficient antigenic stimulation and the immune-suppressive tumor microenvironment. We addressed these hurdles by developing a novel class of immunoconjugates, Antibody-Targeted Pathogen-derived Peptides (ATPPs), which were designed to efficiently deliver viral T-cell epitopes to tumors with the aim of redirecting virus-specific memory T-cells against the tumor. ATPPs were generated through covalent binding of mature MHC class I peptides to antibodies specific for cell surface-expressed tumor antigens that mediate immunoconjugate internalization. By means of a cleavable linker, the peptides are released in the endosomal compartment, from which they are loaded into MHC class I without the need for further processing. Pulsing of tumor cells with ATPPs was found to sensitize these for recognition by virus-specific CD8+ T-cells with much greater efficiency than exogenous loading with free peptides. Systemic injection of ATPPs into tumor-bearing mice enhanced the recruitment of virus-specific T-cells into the tumor and, when combined with immune checkpoint blockade, suppressed tumor growth. Our data thereby demonstrate the potential of ATPPs as a means of kick-starting the immune response against "cold" tumors and increasing the efficacy of checkpoint inhibitors.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/administration & dosage , Immunoconjugates/administration & dosage , Neoplasms/therapy , Peptides/administration & dosage , Animals , Cell Line, Tumor , Female , Herpesvirus 4, Human , Humans , Immunotherapy , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...