Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 41(11): 2547-2559, 2023 11.
Article in English | MEDLINE | ID: mdl-37080929

ABSTRACT

Fungal implant-associated bone infections are rare but difficult to treat and often associated with a poor outcome for patients. Candida species account for approximately 90% of all fungal infections. In vivo biofilm models play a major role to study biofilm development and potential new treatment options; however, there are only a very few in vivo models to study fungi-associated biofilms. Furthermore, mammalian infection models are replaced more and more due to ethical restrictions with other alternative models in basic research. Recently, we developed an insect infection model with Galleria mellonella larvae to study biofilm-associated infections with bacteria. Here, we further expanded the G. mellonella model to study in vivo fungal infections using Candida albicans and Candida krusei. We established a planktonic and biofilm-implant model to test different antifungal medication with amphotericin B, fluconazole, and voriconazole against the two species and assessed the fungal biofilm-load on the implant surface. Planktonic infection with C. albicans and C. krusei showed the killing of the G. mellonella larvae at 5 × 105 colony forming units (CFU). Treatment of larvae with antifungal compounds with amphotericin B and fluconazole showed significant survival improvement against planktonic C. albicans infection, but voriconazole had no effect. Titanium and stainless steel K-wires were preincubated with C. albicans and implanted inside the larvae to induce biofilm infection on the implant surface. The survival analysis revealed significantly reduced survival of the larvae with Candida spp. infection compared to noninfected implants. The treatment with antifungal amphotericin B and fluconazole resulted in a slight and nonsignificant improvement survival of the larvae. The treatment with the antifungal compounds in the biofilm-infection model was not as effective as in the planktonic infection model, which highlights the resistance of fungal biofilms to antifungal compounds like in bacterial biofilms. Scanning electron microscopy (SEM) analysis revealed the formation of a fungal biofilm with hyphae and spores associated with larvae tissue on the implant surface. Thus, our study highlights the use of G. mellonella larvae as alternative in vivo model to study biofilm-associated implant fungal infections and that fungal biofilms exhibit high resistance profiles comparable to bacterial biofilms. The model can be used in the future to test antifungal treatment options for fungal biofilm infections.


Subject(s)
Antifungal Agents , Candidiasis , Animals , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Fluconazole/pharmacology , Fluconazole/therapeutic use , Voriconazole/pharmacology , Voriconazole/therapeutic use , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Candidiasis/drug therapy , Candidiasis/microbiology , Candida albicans , Larva/microbiology , Biofilms , Microbial Sensitivity Tests , Mammals
2.
Bone Joint Res ; 11(5): 327-341, 2022 May.
Article in English | MEDLINE | ID: mdl-35604422

ABSTRACT

AIMS: Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of Staphylococcus aureus to invade and persist within osteoblasts. Here, we sought to determine whether the metabolic and extracellular organic matrix formation and mineralization ability of S. aureus-infected human osteoblasts can be restored after rifampicin (RMP) therapy. METHODS: The human osteoblast-like Saos-2 cells infected with S. aureus EDCC 5055 strain and treated with 8 µg/ml RMP underwent osteogenic stimulation for up to 21 days. Test groups were Saos-2 cells + S. aureus and Saos-2 cells + S. aureus + 8 µg/ml RMP, and control groups were uninfected untreated Saos-2 cells and uninfected Saos-2 cells + 8 µg/ml RMP. RESULTS: The S. aureus-infected osteoblasts showed a significant number of intracellular bacteria colonies and an unusual higher metabolic activity (p < 0.005) compared to uninfected osteoblasts. Treatment with 8 µg/ml RMP significantly eradicated intracellular bacteria and the metabolic activity was comparable to uninfected groups. The RMP-treated infected osteoblasts revealed a significantly reduced amount of mineralized extracellular matrix (ECM) at seven days osteogenesis relative to uninfected untreated osteoblasts (p = 0.007). Prolonged osteogenesis and RMP treatment at 21 days significantly improved the ECM mineralization level. Ultrastructural images of the mineralized RMP-treated infected osteoblasts revealed viable osteoblasts and densely distributed calcium crystal deposits within the extracellular organic matrix. The expression levels of prominent bone formation genes were comparable to the RMP-treated uninfected osteoblasts. CONCLUSION: Intracellular S. aureus infection impaired osteoblast metabolism and function. However, treatment with low dosage of RMP eradicated the intracellular S. aureus, enabling extracellular organic matrix formation and mineralization of osteoblasts at later stage. Cite this article: Bone Joint Res 2022;11(5):327-341.

3.
ALTEX ; 38(2): 245-252, 2021.
Article in English | MEDLINE | ID: mdl-33086380

ABSTRACT

The purpose of this study was to establish an infection model of Galleria mellonella larvae as an alternative in vivo model for biofilm-associated infections on stainless steel and titanium implants. First, the model was established with sterile implants to evaluate biocompatibility. Titanium or stainless steel implants were implanted without adverse effects over the entire observation period of 5 days compared to controls and even up to the pupae and moth stage. Then, stainless steel and titanium implants contaminated with Staphylococcus aureus were implanted into larvae to mimic biofilm-associated infection. For both materials, pre-incubation of the implant with S. aureus led to significantly reduced survival of the larvae compared to sterile implants. Larvae could not be rescued by gentamicin, whereas gentamicin significantly improved the survival of the larvae in case of planktonic infection with S. aureus without an implant, confirming the typical character­istics of reduced antibiotic susceptibility of biofilm infections. Biofilm formation and various stages of biofilm maturation were confirmed by surface electron microscopy and by measuring bacterial gene expression of biofilm-related genes on contaminated implants, which confirmed biofilm formation and upregulation of autolysin (atl ) and sarA genes. In con­clusion, G. mellonella can be used as an alternative in vivo model to study biofilm-associated infections on stainless steel and titanium implants, which may help to reduce animal infection experiments with vertebrates in the future.


Subject(s)
Moths , Stainless Steel , Animals , Biofilms , Staphylococcus aureus , Titanium
4.
Front Microbiol ; 8: 2463, 2017.
Article in English | MEDLINE | ID: mdl-29312175

ABSTRACT

microRNAs (miRNAs) coordinate several physiological and pathological processes by regulating the fate of mRNAs. Studies conducted in vitro indicate a role of microRNAs in the control of host-microbe interactions. However, there is limited understanding of miRNA functions in in vivo models of bacterial infections. In this study, we systematically explored changes in miRNA expression levels of Galleria mellonella larvae (greater-wax moth), a model system that recapitulates the vertebrate innate immunity, following infection with L. monocytogenes. Using an insect-specific miRNA microarray with more than 2000 probes, we found differential expression of 90 miRNAs (39 upregulated and 51 downregulated) in response to infection with L. monocytogenes. We validated the expression of a subset of miRNAs which have mammalian homologs of known or predicted function. In contrast, non-pathogenic L. innocua failed to induce these miRNAs, indicating a virulence-dependent miRNA deregulation. To predict miRNA targets using established algorithms, we generated a publically available G. mellonella transcriptome database. We identified miRNA targets involved in innate immunity, signal transduction and autophagy, including spätzle, MAP kinase, and optineurin, respectively, which exhibited a virulence-specific differential expression. Finally, in silico estimation of minimum free energy of miRNA-mRNA duplexes of validated microRNAs and target transcripts revealed a regulatory network of the host immune response to L. monocytogenes. In conclusion, this study provides evidence for a role of miRNAs in the regulation of the innate immune response following bacterial infection in a simple, rapid and scalable in vivo model that may predict host-microbe interactions in higher vertebrates.

5.
Front Microbiol ; 6: 1199, 2015.
Article in English | MEDLINE | ID: mdl-26579105

ABSTRACT

Listeria monocytogenes is a bacterial pathogen and causative agent for the foodborne infection listeriosis, which is mainly a threat for pregnant, elderly, or immunocompromised individuals. Due to its ability to invade and colonize diverse eukaryotic cell types including cells from invertebrates, L. monocytogenes has become a well-established model organism for intracellular growth. Almost 10 years ago, we and others presented the first whole-genome microarray-based intracellular transcriptome of L. monocytogenes. With the advent of newer technologies addressing transcriptomes in greater detail, we revisit this work, and analyze the intracellular transcriptome of L. monocytogenes during growth in murine macrophages using a deep sequencing based approach. We detected 656 differentially expressed genes of which 367 were upregulated during intracellular growth in macrophages compared to extracellular growth in Brain Heart Infusion broth. This study confirmed ∼64% of all regulated genes previously identified by microarray analysis. Many of the regulated genes that were detected in the current study involve transporters for various metals, ions as well as complex sugars such as mannose. We also report changes in antisense transcription, especially upregulations during intracellular bacterial survival. A notable finding was the detection of regulatory changes for a subset of temperate A118-like prophage genes, thereby shedding light on the transcriptional profile of this bacteriophage during intracellular growth. In total, our study provides an updated genome-wide view of the transcriptional landscape of L. monocytogenes during intracellular growth and represents a rich resource for future detailed analysis.

6.
Appl Environ Microbiol ; 81(23): 8054-65, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26386064

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causative agents of food-borne bacterial gastroenteritis. Swift invasion through the intestinal tract and successful establishment in systemic organs are associated with the adaptability of S. Typhimurium to different stress environments. Low-pH stress serves as one of the first lines of defense in mammalian hosts, which S. Typhimurium must efficiently overcome to establish an infection. Therefore, a better understanding of the molecular mechanisms underlying the adaptability of S. Typhimurium to acid stress is highly relevant. In this study, we have performed a transcriptome analysis of S. Typhimurium under the acid tolerance response (ATR) and found a large number of genes (∼47%) to be differentially expressed (more than 1.5-fold or less than -1.5-fold; P < 0.01). Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Additionally, our knockout analysis of a subset of differentially regulated genes facilitated the identification of proteins that contribute to S. Typhimurium ATR and virulence. Mutants lacking genes encoding the K(+) binding and transport protein KdpA, hypothetical protein YciG, the flagellar hook cap protein FlgD, and the nitrate reductase subunit NarZ were significantly deficient in their ATRs and displayed varied in vitro virulence characteristics. This study offers greater insight into the transcriptome changes of S. Typhimurium under the ATR and provides a framework for further research on the subject.


Subject(s)
Acids/metabolism , Gene Expression Regulation, Bacterial , Salmonella typhimurium/genetics , Transcriptome , Gene Expression Profiling , Hydrogen-Ion Concentration , Mutation , Salmonella typhimurium/metabolism , Sequence Analysis, RNA , Virulence
7.
Article in English | MEDLINE | ID: mdl-25325017

ABSTRACT

Listeria monocytogenes is a Gram-positive human-pathogen bacterium that served as an experimental model for investigating fundamental processes of adaptive immunity and virulence. Recent novel technologies allowed the identification of several hundred non-coding RNAs (ncRNAs) in the Listeria genome and provided insight into an unexpected complex transcriptional machinery. In this review, we discuss ncRNAs that are encoded on the opposite strand of the target gene and are therefore termed antisense RNAs (asRNAs). We highlight mechanistic and functional concepts of asRNAs in L. monocytogenes and put these in context of asRNAs in other bacteria. Understanding asRNAs will further broaden our knowledge of RNA-mediated gene regulation and may provide targets for diagnostic and antimicrobial development.


Subject(s)
Gene Expression Regulation, Bacterial , Listeria monocytogenes/genetics , RNA, Antisense/genetics , RNA, Bacterial/genetics , Listeria monocytogenes/metabolism , RNA, Antisense/classification , RNA, Antisense/metabolism , RNA, Bacterial/classification , RNA, Bacterial/metabolism
8.
PLoS One ; 9(10): e108639, 2014.
Article in English | MEDLINE | ID: mdl-25286309

ABSTRACT

The Gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a severe food-borne infection characterised by abortion, septicaemia, or meningoencephalitis. L. monocytogenes causes outbreaks of febrile gastroenteritis and accounts for community-acquired bacterial meningitis in humans. Listeriosis has one of the highest mortality rates (up to 30%) of all food-borne infections. This human pathogenic bacterium is an important model organism for biomedical research to investigate cell-mediated immunity. L. monocytogenes is also one of the best characterised bacterial systems for the molecular analysis of intracellular parasitism. Recently several transcriptomic studies have also made the ubiquitous distributed bacterium as a model to understand mechanisms of gene regulation from the environment to the infected host on the level of mRNA and non-coding RNAs (ncRNAs). We have used semiconductor sequencing technology for RNA-seq to investigate the repertoire of listerial ncRNAs under extra- and intracellular growth conditions. Furthermore, we applied a new bioinformatic analysis pipeline for detection, comparative genomics and structural conservation to identify ncRNAs. With this work, in total, 741 ncRNA locations of potential ncRNA candidates are now known for L. monocytogenes, of which 611 ncRNA candidates were identified by RNA-seq. 441 transcribed ncRNAs have never been described before. Among these, we identified novel long non-coding antisense RNAs with a length of up to 5,400 nt e.g. opposite to genes coding for internalins, methylases or a high-affinity potassium uptake system, namely the kdpABC operon, which were confirmed by qRT-PCR analysis. RNA-seq, comparative genomics and structural conservation of L. monocytogenes ncRNAs illustrate that this human pathogen uses a large number and repertoire of ncRNA including novel long antisense RNAs, which could be important for intracellular survival within the infected eukaryotic host.


Subject(s)
Listeria monocytogenes/genetics , RNA, Antisense/genetics , Semiconductors , Sequence Analysis, RNA/methods , Transcriptome/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , Gene Expression Regulation, Bacterial , Genetic Association Studies , Humans , Mice , Operon/genetics , RNA, Untranslated/genetics , Reproducibility of Results , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...