Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1347948, 2024.
Article in English | MEDLINE | ID: mdl-38370417

ABSTRACT

Background: Anti-IgLON5 disease is a neurological disorder characterized by autoantibodies against IgLON5 and pathological evidence of neurodegeneration. IgLON5 is a cell adhesion molecule of unknown function that is highly expressed in the brain. Our aim was to investigate the impact of IgLON5 loss-of-function in evaluating brain morphology, social behavior, and the development of symptoms observed in an IgLON5 knockout (IgLON5-KO) mouse model. Methods: The IgLON5-KO mice were generated using CRISPR-Cas9 technology. Immunohistochemistry on fixed sagittal brain sections and Western blotting brain lysates were used to confirm IgLON5 silencing and to evaluate the presence of other cell surface proteins. Two- month-old IgLON5-KO and wild-type (WT) mice underwent a comprehensive battery of behavioral tests to assess 1) locomotion, 2) memory, 3) anxiety, 4) social interaction, and 5) depressive-like behavior. Brain sections were examined for the presence of anatomical abnormalities and deposits of hyperphosphorylated tau in young adult (2-month-old) and aged (22-month-old) mice. Results: Mice did not develop neurological symptoms reminiscent of those seen in patients with anti-IgLON5 disease. Behavioral testing revealed that 2-month-old IgLON5-KO mice showed subtle alterations in motor coordination and balance. IgLON5-KO females exhibited hyperactivity during night and day. Males were observed to have depressive-like behavior and excessive nest-building behavior. Neuropathological studies did not reveal brain morphological alterations or hyperphosphorylated tau deposits. Conclusion: IgLON5-KO mice showed subtle alterations in behavior and deficits in fine motor coordination but did not develop the clinical phenotype of anti-IgLON5 disease.


Subject(s)
Autoimmune Diseases , Neurodegenerative Diseases , Animals , Female , Infant , Male , Mice , Anxiety , Autoantibodies/metabolism , Brain/metabolism , Cell Adhesion Molecules, Neuronal , Mice, Knockout , Social Behavior , Autoimmune Diseases/genetics , Neurodegenerative Diseases/genetics
2.
Liver Int ; 43(8): 1822-1836, 2023 08.
Article in English | MEDLINE | ID: mdl-37312667

ABSTRACT

BACKGROUND & AIMS: Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS: Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS: Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS: We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.


Subject(s)
Fibroblasts , Liver , Humans , Mice , Animals , Fibroblasts/pathology , Liver/pathology , Liver Cirrhosis/pathology , Mitochondria/pathology , Transcription Factors/genetics
3.
Ann Neurol ; 92(1): 81-86, 2022 07.
Article in English | MEDLINE | ID: mdl-35373379

ABSTRACT

Ophelia syndrome or encephalitis with antibodies against the metabotropic glutamate receptor 5 (mGluR5) manifests with behavioral changes, memory deficits, and anxiety. To study the antibody pathogenicity, mice received continuous cerebroventricular infusion of patients' or controls' immunoglobulin G (IgG) for 14 days, followed by a 15-day washout. The effects on hippocampal mGluR5 clusters were determined by confocal microscopy. Animals infused with patients' IgG, but not controls' IgG, showed memory impairment, increased anxiety, and decreased neuronal surface mGluR5 clusters. After antibody clearance, both behavioral and molecular changes reversed to baseline conditions. These findings support the pathogenicity of these antibodies in anti-mGluR5 encephalitis. ANN NEUROL 2022;92:81-86.


Subject(s)
Encephalitis , Receptor, Metabotropic Glutamate 5 , Animals , Autoantibodies , Humans , Immunoglobulin G , Memory Disorders , Mice , Neurons
4.
Ann Neurol ; 91(6): 801-813, 2022 06.
Article in English | MEDLINE | ID: mdl-35253937

ABSTRACT

OBJECTIVE: The encephalitis associated with antibodies against contactin-associated proteinlike 2 (CASPR2) is presumably antibody-mediated, but the antibody effects and whether they cause behavioral alterations are not well known. Here, we used a mouse model of patients' immunoglobulin G (IgG) transfer and super-resolution microscopy to demonstrate the antibody pathogenicity. METHODS: IgG from patients with anti-CASPR2 encephalitis or healthy controls was infused into the cerebroventricular system of mice. The levels and colocalization of CASPR2 with transient axonal glycoprotein 1 (TAG1) were determined with stimulated emission depletion microscopy (40-70µm lateral resolution). Hippocampal clusters of Kv1.1 voltage-gated potassium channels (VGKCs) and GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) were quantified with confocal microscopy. Behavioral alterations were assessed with standard behavioral paradigms. Cultured neurons were used to determine the levels of intracellular CASPR2 and TAG1 after exposure to patients' IgG. RESULTS: Infusion of patients' IgG, but not controls' IgG, caused memory impairment along with hippocampal reduction of surface CASPR2 clusters and decreased CASPR2/TAG1 colocalization. In cultured neurons, patients' IgG led to an increase of intracellular CASPR2 without affecting TAG1, suggesting selective CASPR2 internalization. Additionally, mice infused with patients' IgG showed decreased levels of Kv1.1 and GluA1 (two CASPR2-regulated proteins). All these alterations and the memory deficit reverted to normal after removing patients' IgG. INTERPRETATION: IgG from patients with anti-CASPR2 encephalitis causes reversible memory impairment, inhibits the interaction of CASPR2/TAG1, and decreases the levels of CASPR2 and related proteins (VGKC, AMPAR). These findings fulfill the postulates of antibody-mediated disease and provide a biological basis for antibody-removing treatment approaches. ANN NEUROL 2022;91:801-813.


Subject(s)
Autoantibodies , Encephalitis , Membrane Proteins , Nerve Tissue Proteins , Potassium Channels, Voltage-Gated , Animals , Autoantibodies/immunology , Contactin 2/immunology , Encephalitis/immunology , Humans , Immunoglobulin G/metabolism , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/immunology , Nerve Tissue Proteins/metabolism
5.
Article in English | MEDLINE | ID: mdl-34903638

ABSTRACT

BACKGROUND AND OBJECTIVES: To demonstrate that an analog (SGE-301) of a brain-derived cholesterol metabolite, 24(S)-hydroxycholesterol, which is a selective positive allosteric modulator (PAM) of NMDA receptors (NMDARs), is able to reverse the memory and synaptic alterations caused by CSF from patients with anti-NMDAR encephalitis in an animal model of passive transfer of antibodies. METHODS: Four groups of mice received (days 1-14) patients' or controls' CSF via osmotic pumps connected to the cerebroventricular system and from day 11 were treated with daily subcutaneous injections of SGE-301 or vehicle (no drug). Visuospatial memory, locomotor activity (LA), synaptic NMDAR cluster density, hippocampal long-term potentiation (LTP), and paired-pulse facilitation (PPF) were assessed on days 10, 13, 18, and 26 using reported techniques. RESULTS: On day 10, mice infused with patients' CSF, but not controls' CSF, presented a significant visuospatial memory deficit, reduction of NMDAR clusters, and impairment of LTP, whereas LA and PPF were unaffected. These alterations persisted until day 18, the time of maximal deficits in this model. In contrast, mice that received patients' CSF but from day 11 were treated with SGE-301 showed memory recovery (day 13), and on day 18, all paradigms (memory, NMDAR clusters, and LTP) had reversed to values similar to those of controls. On day 26, no differences were observed among experimental groups. DISCUSSION: An oxysterol biology-based PAM of NMDARs is able to reverse the synaptic and memory deficits caused by CSF from patients with anti-NMDAR encephalitis. These findings suggest a novel adjuvant treatment approach that deserves future clinical evaluation.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Autoantibodies/administration & dosage , Autoantibodies/cerebrospinal fluid , Cerebrospinal Fluid , Hydroxycholesterols/pharmacology , Memory Disorders/drug therapy , Animals , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/chemically induced , Behavior, Animal/drug effects , Disease Models, Animal , Humans , Hydroxycholesterols/analysis , Male , Memory Disorders/chemically induced , Mice , Mice, Inbred C57BL
6.
Article in English | MEDLINE | ID: mdl-33172961

ABSTRACT

OBJECTIVE: To determine whether maternofetal transfer of NMDA receptor (NMDAR) antibodies has pathogenic effects on the fetus and offspring, we developed a model of placental transfer of antibodies. METHODS: Pregnant C57BL/6J mice were administered via tail vein patients' or controls' immunoglobulin G (IgG) on days 14-16 of gestation, when the placenta is able to transport IgG and the immature fetal blood-brain barrier is less restrictive to IgG crossing. Immunohistochemical and DiOlistic (gene gun delivery of fluorescent dye) staining, confocal microscopy, standardized developmental and behavioral tasks, and hippocampal long-term potentiation were used to determine the antibody effects. RESULTS: In brains of fetuses, patients' IgG, but not controls' IgG, bound to NMDAR, causing a decrease in NMDAR clusters and cortical plate thickness. No increase in neonatal mortality was observed, but offspring exposed in utero to patients' IgG had reduced levels of cell-surface and synaptic NMDAR, increased dendritic arborization, decreased density of mature (mushroom-shaped) spines, microglial activation, and thinning of brain cortical layers II-IV with cellular compaction. These animals also had a delay in innate reflexes and eye opening and during follow-up showed depressive-like behavior, deficits in nest building, poor motor coordination, and impaired social-spatial memory and hippocampal plasticity. Remarkably, all these paradigms progressively improved (becoming similar to those of controls) during follow-up until adulthood. CONCLUSIONS: In this model, placental transfer of patients' NMDAR antibodies caused severe but reversible synaptic and neurodevelopmental alterations. Reversible antibody effects may contribute to the infrequent and limited number of complications described in children of patients who develop anti-NMDAR encephalitis during pregnancy.


Subject(s)
Autoantibodies/toxicity , Brain/pathology , Prenatal Exposure Delayed Effects , Animals , Behavior, Animal , Female , Humans , Immunoglobulin G , Maternal-Fetal Exchange , Mice , Mice, Inbred C57BL , Placenta , Pregnancy , Pregnancy Complications
7.
Brain ; 143(9): 2709-2720, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32830245

ABSTRACT

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an immune-mediated disease characterized by a complex neuropsychiatric syndrome in association with an antibody-mediated decrease of NMDAR. About 85% of patients respond to immunotherapy (and removal of an associated tumour if it applies), but it often takes several months or more than 1 year for patients to recover. There are no complementary treatments, beyond immunotherapy, to accelerate this recovery. Previous studies showed that SGE-301, a synthetic analogue of 24(S)-hydroxycholesterol, which is a potent and selective positive allosteric modulator of NMDAR, reverted the memory deficit caused by phencyclidine (a non-competitive antagonist of NMDAR), and prevented the NMDAR dysfunction caused by patients' NMDAR antibodies in cultured neurons. An advantage of SGE-301 is that it is optimized for systemic delivery such that plasma and brain exposures are sufficient to modulate NMDAR activity. Here, we used SGE-301 to confirm that in cultured neurons it prevented the antibody-mediated reduction of receptors, and then we applied it to a previously reported mouse model of passive cerebroventricular transfer of patient's CSF antibodies. Four groups were established: mice receiving continuous (14-day) infusion of patients' or controls' CSF, treated with daily subcutaneous administration of SGE-301 or vehicle (no drug). The effects on memory were examined with the novel object location test at different time points, and the effects on synaptic levels of NMDAR (assessed with confocal microscopy) and plasticity (long-term potentiation) were examined in the hippocampus on Day 18, which in this model corresponds to the last day of maximal clinical and synaptic alterations. As expected, mice infused with patient's CSF antibodies, but not those infused with controls' CSF, and treated with vehicle developed severe memory deficit without locomotor alteration, accompanied by a decrease of NMDAR clusters and impairment of long-term potentiation. All antibody-mediated pathogenic effects (memory, synaptic NMDAR, long-term potentiation) were prevented in the animals treated with SGE-301, despite this compound not antagonizing antibody binding. Additional investigations on the potential mechanisms related to these SGE-301 effects showed that (i) in cultured neurons SGE-301 prolonged the decay time of NMDAR-dependent spontaneous excitatory postsynaptic currents suggesting a prolonged open time of the channel; and (ii) it significantly decreased, without fully preventing, the internalization of antibody-bound receptors suggesting that additional, yet unclear mechanisms, contribute in keeping unchanged the surface NMDAR density. Overall, these findings suggest that SGE-301, or similar NMDAR modulators, could potentially serve as complementary treatment for anti-NMDAR encephalitis and deserve future investigations.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/metabolism , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/therapy , Autoantibodies/administration & dosage , Autoantibodies/cerebrospinal fluid , Receptors, N-Methyl-D-Aspartate/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Cells, Cultured , HEK293 Cells , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Hydroxycholesterols/chemistry , Hydroxycholesterols/pharmacology , Hydroxycholesterols/therapeutic use , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques
8.
Ann Neurol ; 88(3): 603-613, 2020 09.
Article in English | MEDLINE | ID: mdl-32583480

ABSTRACT

OBJECTIVE: The aim was to demonstrate that antibodies from patients with anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis alter the levels of dopamine 1 receptor (D1R) and dopamine 2 receptor (D2R) and cause psychotic-like features in mice. METHODS: Cultured rat hippocampal neurons were treated with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, and the effects on clusters of D1R and D2R were quantified. In vivo studies included 71 C57BL/6J mice that were chronically infused with CSF from patients or controls through ventricular catheters connected to subcutaneous osmotic pumps. Prepulse inhibition of the acoustic startling reflex (PPI; a marker of psychotic-like behavior), memory, locomotor activity, and the density of cell-surface and synaptic D1R, D2R, and NMDAR clusters were examined at different time points using reported techniques. RESULTS: In cultured neurons, CSF from patients, but not from controls, caused a significant decrease of cell-surface D1R and an increase of D2R clusters. In mice, CSF from patients caused a significant decrease of synaptic and total cell-surface D1R clusters and an increase of D2R clusters associated with a decrease of PPI. These effects were accompanied by memory impairment and a reduction of surface NMDARs, as reported in this model. The psychotic-like features, memory impairment, and changes in levels of D1R, D2R, and NMDAR progressively improved several days after the infusion of CSF from patients stopped. INTERPRETATION: In addition to memory deficits and reduction of NMDARs, CSF antibodies from patients with anti-NMDAR encephalitis cause reversible psychotic-like features accompanied by changes (D1R decrease, D2R increase) in cell-surface dopamine receptor clusters. ANN NEUROL 2020 ANN NEUROL 2020;88:603-613.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Autoantibodies/pharmacology , Neurons/drug effects , Receptors, Dopamine/metabolism , Reflex, Startle/drug effects , Adolescent , Adult , Animals , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/cerebrospinal fluid , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/metabolism , Autoantibodies/cerebrospinal fluid , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Psychotic Disorders , Rats , Rats, Wistar , Receptors, Dopamine/drug effects , Reflex, Startle/physiology , Young Adult
9.
Lancet Neurol ; 18(11): 1045-1057, 2019 11.
Article in English | MEDLINE | ID: mdl-31326280

ABSTRACT

The identification of anti-NMDA receptor (NMDAR) encephalitis about 12 years ago made it possible to recognise that some patients with rapidly progressive psychiatric symptoms or cognitive impairment, seizures, abnormal movements, or coma of unknown cause, had an autoimmune disease. In this disease, autoantibodies serve as a diagnostic marker and alter NMDAR-related synaptic transmission. At symptom onset, distinguishing the disease from a primary psychiatric disorder is challenging. The severity of symptoms often requires intensive care. Other than clinical assessment, no specific prognostic biomarkers exist. The disease is more prevalent in women (with a female to male ratio of around 8:2) and about 37% of patients are younger than 18 years at presentation of the disease. Tumours, usually ovarian teratoma, and herpes simplex encephalitis are known triggers of NMDAR autoimmunity. About 80% of patients improve with immunotherapy and, if needed, tumour removal, but the recovery is slow. Animal models have started to reveal the complexity of the underlying pathogenic mechanisms and will lead to novel treatments beyond immunotherapy. Future studies should aim at identifying prognostic biomarkers and treatments that accelerate recovery.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Autoantibodies/blood , Adolescent , Adult , Age of Onset , Animals , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/epidemiology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/etiology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/therapy , Child , Combined Modality Therapy , Critical Care/methods , Disease Models, Animal , Early Diagnosis , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunotherapy , Infant, Newborn , Male , Maternal-Fetal Exchange , Memory Disorders/etiology , Mental Disorders/etiology , Movement Disorders/etiology , Neoplasms/complications , Neoplasms/surgery , Nerve Tissue Proteins/immunology , Pregnancy , Pregnancy Complications , Pregnancy Outcome , Prognosis , Receptors, N-Methyl-D-Aspartate/immunology , Seizures/etiology , Sex Distribution , Symptom Assessment , Young Adult
10.
Brain ; 141(11): 3144-3159, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30346486

ABSTRACT

Leucine-rich glioma-inactivated 1 (LGI1) is a secreted neuronal protein that forms a trans-synaptic complex that includes the presynaptic disintegrin and metalloproteinase domain-containing protein 23 (ADAM23), which interacts with voltage-gated potassium channels Kv1.1, and the postsynaptic ADAM22, which interacts with AMPA receptors. Human autoantibodies against LGI1 associate with a form of autoimmune limbic encephalitis characterized by severe but treatable memory impairment and frequent faciobrachial dystonic seizures. Although there is evidence that this disease is immune-mediated, the underlying LGI1 antibody-mediated mechanisms are unknown. Here, we used patient-derived immunoglobulin G (IgG) antibodies to determine the main epitope regions of LGI1 and whether the antibodies disrupt the interaction of LGI1 with ADAM23 and ADAM22. In addition, we assessed the effects of patient-derived antibodies on Kv1.1, AMPA receptors, and memory in a mouse model based on cerebroventricular transfer of patient-derived IgG. We found that IgG from all patients (n = 25), but not from healthy participants (n = 20), prevented the binding of LGI1 to ADAM23 and ADAM22. Using full-length LGI1, LGI3, and LGI1 constructs containing the LRR1 domain (EPTP1-deleted) or EPTP1 domain (LRR3-EPTP1), IgG from all patients reacted with epitope regions contained in the LRR1 and EPTP1 domains. Confocal analysis of hippocampal slices of mice infused with pooled IgG from eight patients, but not pooled IgG from controls, showed a decrease of total and synaptic levels of Kv1.1 and AMPA receptors. The effects on Kv1.1 preceded those involving the AMPA receptors. In acute slice preparations of hippocampus, patch-clamp analysis from dentate gyrus granule cells and CA1 pyramidal neurons showed neuronal hyperexcitability with increased glutamatergic transmission, higher presynaptic release probability, and reduced synaptic failure rate upon minimal stimulation, all likely caused by the decreased expression of Kv1.1. Analysis of synaptic plasticity by recording field potentials in the CA1 region of the hippocampus showed a severe impairment of long-term potentiation. This defect in synaptic plasticity was independent from Kv1 blockade and was possibly mediated by ineffective recruitment of postsynaptic AMPA receptors. In parallel with these findings, mice infused with patient-derived IgG showed severe memory deficits in the novel object recognition test that progressively improved after stopping the infusion of patient-derived IgG. Different from genetic models of LGI1 deficiency, we did not observe aberrant dendritic sprouting or defective synaptic pruning as potential cause of the symptoms. Overall, these findings demonstrate that patient-derived IgG disrupt presynaptic and postsynaptic LGI1 signalling, causing neuronal hyperexcitability, decreased plasticity, and reversible memory deficits.


Subject(s)
Immunoglobulin G/pharmacology , Kv1.1 Potassium Channel/metabolism , Memory/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Proteins/immunology , Receptors, AMPA/metabolism , ADAM Proteins/metabolism , Animals , Autoimmune Diseases/immunology , Brain/cytology , Brain/metabolism , Disks Large Homolog 4 Protein/metabolism , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Kv1.1 Potassium Channel/ultrastructure , Limbic Encephalitis/immunology , Male , Memory/drug effects , Mice , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/drug effects , Neurons/drug effects , Neurons/ultrastructure , Protein Binding/drug effects , Protein Domains/drug effects , Proteins/metabolism , Synapses/drug effects , Synapses/physiology , Synapses/ultrastructure
11.
Neuron ; 100(1): 91-105.e9, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30146304

ABSTRACT

AMPA receptors are essential for fast excitatory transmission in the CNS. Autoantibodies to AMPA receptors have been identified in humans with autoimmune encephalitis and severe defects of hippocampal function. Here, combining electrophysiology and high-resolution imaging with neuronal culture preparations and passive-transfer models in wild-type and GluA1-knockout mice, we analyze how specific human autoantibodies against the AMPA receptor subunit GluA2 affect receptor function and composition, synaptic transmission, and plasticity. Anti-GluA2 antibodies induce receptor internalization and a reduction of synaptic GluA2-containing AMPARs followed by compensatory ryanodine receptor-dependent incorporation of synaptic non-GluA2 AMPARs. Furthermore, application of human pathogenic anti-GluA2 antibodies to mice impairs long-term synaptic plasticity in vitro and affects learning and memory in vivo. Our results identify a specific immune-neuronal rearrangement of AMPA receptor subunits, providing a framework to explain disease symptoms.


Subject(s)
Autoantibodies/pharmacology , Encephalitis/physiopathology , Hashimoto Disease/physiopathology , Neuronal Plasticity/drug effects , Receptors, AMPA/drug effects , Synaptic Transmission/drug effects , Animals , Autoantibodies/immunology , Autoantigens/immunology , Encephalitis/complications , Encephalitis/immunology , Hashimoto Disease/complications , Hashimoto Disease/immunology , Hippocampus/drug effects , Humans , Memory Disorders/etiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Receptors, AMPA/immunology
12.
Ann Clin Transl Neurol ; 4(11): 768-783, 2017 11.
Article in English | MEDLINE | ID: mdl-29159189

ABSTRACT

Objective: Autoimmune encephalitis is most frequently associated with anti-NMDAR autoantibodies. Their pathogenic relevance has been suggested by passive transfer of patients' cerebrospinal fluid (CSF) in mice in vivo. We aimed to analyze the intrathecal plasma cell repertoire, identify autoantibody-producing clones, and characterize their antibody signatures in recombinant form. Methods: Patients with recent onset typical anti-NMDAR encephalitis were subjected to flow cytometry analysis of the peripheral and intrathecal immune response before, during, and after immunotherapy. Recombinant human monoclonal antibodies (rhuMab) were cloned and expressed from matching immunoglobulin heavy- (IgH) and light-chain (IgL) amplicons of clonally expanded intrathecal plasma cells (cePc) and tested for their pathogenic relevance. Results: Intrathecal accumulation of B and plasma cells corresponded to the clinical course. The presence of cePc with hypermutated antigen receptors indicated an antigen-driven intrathecal immune response. Consistently, a single recombinant human GluN1-specific monoclonal antibody, rebuilt from intrathecal cePc, was sufficient to reproduce NMDAR epitope specificity in vitro. After intraventricular infusion in mice, it accumulated in the hippocampus, decreased synaptic NMDAR density, and caused severe reversible memory impairment, a key pathogenic feature of the human disease, in vivo. Interpretation: A CNS-specific humoral immune response is present in anti-NMDAR encephalitis specifically targeting the GluN1 subunit of the NMDAR. Using reverse genetics, we recovered the typical intrathecal antibody signature in recombinant form, and proved its pathogenic relevance by passive transfer of disease symptoms from man to mouse, providing the critical link between intrathecal immune response and the pathogenesis of anti-NMDAR encephalitis as a humorally mediated autoimmune disease.

13.
Ann Neurol ; 80(3): 388-400, 2016 09.
Article in English | MEDLINE | ID: mdl-27399303

ABSTRACT

OBJECTIVE: To demonstrate that ephrin-B2 (the ligand of EphB2 receptor) antagonizes the pathogenic effects of patients' N-methyl-D-aspartate receptor (NMDAR) antibodies on memory and synaptic plasticity. METHODS: One hundred twenty-two C57BL/6J mice infused with cerebrospinal fluid (CSF) from patients with anti-NMDAR encephalitis or controls, with or without ephrin-B2, were investigated. CSF was infused through ventricular catheters connected to subcutaneous osmotic pumps over 14 days. Memory, behavioral tasks, locomotor activity, presence of human antibodies specifically bound to hippocampal NMDAR, and antibody effects on the density of cell-surface and synaptic NMDAR and EphB2 were examined at different time points using reported techniques. Short- and long-term synaptic plasticity were determined in acute brain sections; the Schaffer collateral pathway was stimulated and the field excitatory postsynaptic potentials were recorded in the CA1 region of the hippocampus. RESULTS: Mice infused with patients' CSF, but not control CSF, developed progressive memory deficit and depressive-like behavior along with deposits of NMDAR antibodies in the hippocampus. These findings were associated with a decrease of the density of cell-surface and synaptic NMDAR and EphB2, and marked impairment of long-term synaptic plasticity without altering short-term plasticity. Administration of ephrin-B2 prevented the pathogenic effects of the antibodies in all the investigated paradigms assessing memory, depressive-like behavior, density of cell-surface and synaptic NMDAR and EphB2, and long-term synaptic plasticity. INTERPRETATION: Administration of ephrin-B2 prevents the pathogenic effects of anti-NMDAR encephalitis antibodies on memory and behavior, levels of cell-surface NMDAR, and synaptic plasticity. These findings reveal a strategy beyond immunotherapy to antagonize patients' antibody effects. Ann Neurol 2016;80:388-400.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Antibodies/drug effects , CA1 Region, Hippocampal/drug effects , Depression/prevention & control , Ephrin-B2/pharmacology , Memory Disorders/prevention & control , Neuronal Plasticity/drug effects , Animals , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/cerebrospinal fluid , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Antibodies/immunology , Behavior, Animal , CA1 Region, Hippocampal/immunology , Depression/etiology , Depression/immunology , Disease Models, Animal , Humans , Male , Memory Disorders/etiology , Memory Disorders/immunology , Mice , Mice, Inbred C57BL , Neuronal Plasticity/immunology , Receptor, EphB2
14.
Brain ; 138(Pt 1): 94-109, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25392198

ABSTRACT

Anti-N-methyl D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder that associates with prominent memory and behavioural deficits. Patients' antibodies react with the N-terminal domain of the GluN1 (previously known as NR1) subunit of NMDAR causing in cultured neurons a selective and reversible internalization of cell-surface receptors. These effects and the frequent response to immunotherapy have suggested an antibody-mediated pathogenesis, but to date there is no animal model showing that patients' antibodies cause memory and behavioural deficits. To develop such a model, C57BL6/J mice underwent placement of ventricular catheters connected to osmotic pumps that delivered a continuous infusion of patients' or control cerebrospinal fluid (flow rate 0.25 µl/h, 14 days). During and after the infusion period standardized tests were applied, including tasks to assess memory (novel object recognition in open field and V-maze paradigms), anhedonic behaviours (sucrose preference test), depressive-like behaviours (tail suspension, forced swimming tests), anxiety (black and white, elevated plus maze tests), aggressiveness (resident-intruder test), and locomotor activity (horizontal and vertical). Animals sacrificed at Days 5, 13, 18, 26 and 46 were examined for brain-bound antibodies and the antibody effects on total and synaptic NMDAR clusters and protein concentration using confocal microscopy and immunoblot analysis. These experiments showed that animals infused with patients' cerebrospinal fluid, but not control cerebrospinal fluid, developed progressive memory deficits, and anhedonic and depressive-like behaviours, without affecting other behavioural or locomotor tasks. Memory deficits gradually worsened until Day 18 (4 days after the infusion stopped) and all symptoms resolved over the next week. Accompanying brain tissue studies showed progressive increase of brain-bound human antibodies, predominantly in the hippocampus (maximal on Days 13-18), that after acid extraction and characterization with GluN1-expressing human embryonic kidney cells were confirmed to be against the NMDAR. Confocal microscopy and immunoblot analysis of the hippocampus showed progressive decrease of the density of total and synaptic NMDAR clusters and total NMDAR protein concentration (maximal on Day 18), without affecting the post-synaptic density protein 95 (PSD95) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. These effects occurred in parallel with memory and other behavioural deficits and gradually improved after Day 18, with reversibility of symptoms accompanied by a decrease of brain-bound antibodies and restoration of NMDAR levels. Overall, these findings establish a link between memory and behavioural deficits and antibody-mediated reduction of NMDAR, provide the biological basis by which removal of antibodies and antibody-producing cells improve neurological function, and offer a model for testing experimental therapies in this and similar disorders.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/cerebrospinal fluid , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Behavioral Symptoms/chemically induced , Immunoglobulin G/adverse effects , Memory Disorders/chemically induced , Animals , Apoptosis/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Disease Models, Animal , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Food Preferences/drug effects , HEK293 Cells , Histocompatibility Antigens Class I/immunology , Humans , Immunoglobulin G/cerebrospinal fluid , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Minor Histocompatibility Antigens , Sucrose/administration & dosage , Swimming/psychology , Time Factors
15.
J Neuroimmunol ; 261(1-2): 53-9, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23726906

ABSTRACT

The role of antibodies against the P/Q type voltage-gated calcium channels (VGCC-ab) in the pathogenesis of paraneoplastic cerebellar degeneration (PCD) and lung cancer is unclear. We evaluated in mice the effect of intrathecal injection of IgG purified from serum of a patient with both PCD and Lambert-Eaton myasthenic syndrome (LEMS), and from another patient with isolated LEMS. Mice injected with PCD/LEMS IgG developed marked, reversible ataxia compared with those injected with LEMS or control IgG. These findings suggest that P/Q-type VGCC-ab may play a role in the pathogenesis of ataxia in patients with PCD and SCLC.


Subject(s)
Autoantibodies/toxicity , Calcium Channels, P-Type/immunology , Calcium Channels, Q-Type/immunology , Cerebellar Ataxia/immunology , Paraneoplastic Cerebellar Degeneration/immunology , Animals , Calcium Channels, P-Type/blood , Cerebellar Ataxia/chemically induced , HEK293 Cells , Humans , Injections, Spinal , Mice , Rats
16.
PLoS One ; 7(12): e52361, 2012.
Article in English | MEDLINE | ID: mdl-23300649

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is the most relevant animal model to study demyelinating diseases such as multiple sclerosis. EAE can be induced by active (active EAE) or passive (at-EAE) transfer of activated T cells in several species and strains of rodents. However, histological features of at-EAE model in C57BL/6 are poorly described. The aim of this study was to characterize the neuroinflammatory and neurodegenerative responses of at-EAE in C57BL/6 mice by histological techniques and compare them with that observed in the active EAE model. To develop the at-EAE, splenocytes from active EAE female mice were harvested and cultured in presence of MOG(35-55) and IL-12, and then injected intraperitoneally in recipient female C57BL6/J mice. In both models, the development of EAE was similar except for starting before the onset of symptoms and presenting a higher EAE cumulative score in the at-EAE model. Spinal cord histological examination revealed an increased glial activation as well as more extensive demyelinating areas in the at-EAE than in the active EAE model. Although inflammatory infiltrates composed by macrophages and T lymphocytes were found in the spinal cord and brain of both models, B lymphocytes were significantly increased in the at-EAE model. The co-localization of these B cells with IgG and their predominant distribution in areas of demyelination would suggest that IgG-secreting B cells are involved in the neurodegenerative processes associated with at-EAE.


Subject(s)
B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunization, Passive , Myelin-Oligodendrocyte Glycoprotein/immunology , Animals , Brain/immunology , Demyelinating Diseases/complications , Encephalomyelitis, Autoimmune, Experimental/complications , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice , Mice, Inbred C57BL , Neuroglia/immunology , Neuroglia/pathology , Neurons/pathology , Peptide Fragments/immunology , Spinal Cord/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...