Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(48): 43346-43363, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506161

ABSTRACT

Despite the advantages of high contaminant removal, operational flexibility, and technical advancements offered, the undesirable fouling property of membranes limits their durability, thus posing restrictions on their usage. An enormous struggle is underway to conquer this major challenge. Most of the earlier reviews include the basic concepts of fouling and antifouling, with respect to particular separation processes such as ultrafiltration, nanofiltration, reverse osmosis and membrane bioreactors, graphene-based membranes, zwitterionic membranes, and so on. As per our knowledge, the importance of nanofiber membranes in challenging the fouling process has not been included in any record to date. Nanofibers with the ability to be embedded in any medium with a high surface to volume ratio play a key role in mitigating the fouling of membranes, and it is important for these studies to be critically analyzed and reported. Our Review hence intends to focus on nanofiber membranes developed with enhanced antifouling and biofouling properties with a brief introduction on fabrication processes and surface and chemical modifications. A summary on surface modifications of preformed nanofibers is given along with different nanofiller combinations used and blend fabrication with efficacy in wastewater treatment and antifouling abilities. In addition, future prospects and advancements are discussed.

2.
ACS Appl Mater Interfaces ; 14(34): 38471-38482, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35975683

ABSTRACT

Perovskite quantum dots (PQDs) offer high photoluminescence quantum yields; however, due to their limited stability in aqueous media, to date their utilization in biomedical applications has been limited. The present work demonstrates highly fluorescent and stable aqueous PQDs that were synthesized using a facile engineered phase transfer method. Ligands were engineered to have a dual functionality, i.e., they could simultaneously mediate the strong binding of PQDs and the interactions with water molecules. The resultant water-soluble PQDs demonstrated robust structural and optical properties. The extracted aqueous PQDs remained stable in pellet form for 8 months, which was the entire test duration. Notably, 100% of their fluorescence was also retained. As a proof-of-concept experiment, the water-soluble PQDs were successfully tagged to polyclonal antibodies and used to image Escherichia coli cells in aqueous media. No structural or optical disturbance in PQDs was detected throughout the process. This work marks the beginning of the use of nonpolymeric aqueous PQDs and shows their strong potential to be used in biological applications.


Subject(s)
Quantum Dots , Calcium Compounds/chemistry , Fluorescence , Oxides , Quantum Dots/chemistry , Titanium , Water/chemistry
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121197, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35381439

ABSTRACT

Biowaste based nanoadsorbents have gained much attention in the recent times for wastewater decolourization owing to their low cost, high surface area and high adsorption capacities. In the present research, garlic peel based nanoparticles (GCNP) were synthesized at different temperatures by a one step pyrolytic green approach for the effective removal of cationic dye, malachite green from the aqueous medium. The surface properties of Garlic nanoparticles were elucidated by N2 adsorption- desorption and all the GCNP samples were found to exhibit Type IV(a) isotherm indicating the presence of mesopores in carbon matrix. Using BET calculations, highest surface area (380 m2/g) was obtained for GCNP synthesized at 1000 ◦C. Characterization of nanoparticles was done by XRD, EDAX, SEM and FTIR studies before and after the dye treatment. Adsorption studies conducted using different parameters like contact time, concentration and pH and dosage of adsorbent showed removal efficiency above 90% for the contact time of 70 min. Best adsorption experimental results were obtained for GCNP synthesized at 1000 °C ascribable to its high surface area, higher total pore volume (0.26 cm2/g) and higher carbon content. Four adsorption isotherm models were used to validate batch equillibrium studies and the results showed data in good agreement with Langmuir and Freundlich isotherms with maximum Langmuir adsorbtion capactiy to be 373.7 mg/g. Kinetic modelling of the data showed best fit with the Pseudo second order model with rate constant value of 48.726 g mg-1 min-1. Regenerative studies were conducted conducted upto 6 cycles. Also the GC nanoparticles were tested for their compatibility in membrane form wherein, removal efficiency results were obtained for GCNP anchored in polyvinyl difluoride (PVDF) and polysulfone (PSF) membrane matrix for dye adsorption.


Subject(s)
Garlic , Nanospheres , Carbon , Hydrogen-Ion Concentration , Kinetics , Rosaniline Dyes , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...