Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage Clin ; 28: 102407, 2020.
Article in English | MEDLINE | ID: mdl-32942175

ABSTRACT

Proteinopathies are key elements in the pathogenesis of age-related neurodegenerative diseases, particularly Alzheimer's disease (AD), with the nature and location of the proteinopathy characterizing much of the disease phenotype. Susceptibility of brain regions to pathology may partly be determined by intrinsic network structure and connectivity. It remains unknown, however, how these networks inform the disease cascade in the context of AD biomarkers, such as beta-amyloid (Aß), in clinically-normal older adults.The default-mode network (DMN), a prominent intrinsic network, is heavily implicated in AD due to its spatial overlap with AD atrophy patterns and tau deposition. We investigated the influence of baseline Aß positron emission tomography (PET) signal and intrinsic DMN connectivity on DMN-specific cortical thinning in 120 clinically-normal older adults from the Harvard Aging Brain Study (73 ± 6 years, 58% Female, CDR = 0). Participants underwent11C Pittsburgh Compound-B (PiB) PET, 18F flortaucipir (FTP) PET, and resting-state MRI scans at baselineand longitudinal MRI (3.6 ± 0.96 scans; 5.04 ± 0.8 years). Linear mixed models tested relationships between baseline PiB and DMN connectivity on cortical thinning in a composite of DMN regions. Lower DMN connectivity was associated with faster cortical thinning, but only in those with elevated baseline PiB-PET signal. This relationship was network specific, in that the frontoparietal control network did not account for the observed association. Additionally, the relationship was independent of inferior temporal lobe FTP-PET signal. Our findings provide evidence that compromised DMN connectivity, in the context of preclinical AD, foreshadows neurodegeneration in DMN regions.


Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cerebral Cortical Thinning , Default Mode Network , Female , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography , Tomography, X-Ray Computed
2.
Ann Neurol ; 88(5): 921-932, 2020 11.
Article in English | MEDLINE | ID: mdl-32799367

ABSTRACT

OBJECTIVE: The goal of this study was to examine sex differences in tau distribution across the brain of older adults, using positron emission tomography (PET), and investigate how these differences might associate with cognitive trajectories. METHODS: Participants were 343 clinically normal individuals (women, 58%; 73.8 [8.5] years) and 55 individuals with mild cognitive impairment (MCI; women, 38%; 76.9 [7.3] years) from the Harvard Aging Brain Study and the Alzheimer's Disease Neuroimaging Initiative. We examined 18 F-Flortaucipir (FTP)-positron emission tomography (PET) signal across 41 cortical and subcortical regions of interest (ROIs). Linear regression models estimated the effect of sex on FTP-signal for each ROI after adjusting for age and cohort. We also examined interactions between sex*Aß-PET positive / negative (+ / -) and sex*apolipoprotein ε4 (APOEε4) status. Linear mixed models estimated the moderating effect of sex on the relationship between a composite of sex-differentiated tau ROIs and cognitive decline. RESULTS: Women showed significantly higher FTP-signals than men across multiple regions of the cortical mantle (p < 0.007). ß-amyloid (Aß)-moderated sex differences in tau signal were localized to medial and inferio-lateral temporal regions (p < 0.007); Aß + women exhibited greater FTP-signal than other groups. APOEε4-moderated sex differences in FTP-signal were only found in the lateral occipital lobe. Women with higher FTP-signals in composite ROI exhibited faster cognitive decline than men (p = 0.04). INTERPRETATION: Tau vulnerability in women is not just limited to the medial temporal lobe and significantly contributed to greater risk of faster cognitive decline. Interactive effects of sex and Aß were predominantly localized in the temporal lobe, however, sex differences in extra-temporal tau highlights the possibility of accelerated tau proliferation in women with the onset of clinical symptomatology. ANN NEUROL 2020;88:921-932.


Subject(s)
Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Tauopathies/diagnostic imaging , Tauopathies/psychology , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Amyloid beta-Peptides/genetics , Apolipoprotein E4/genetics , Carbolines , Disease Progression , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Occipital Lobe/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals , Sex Characteristics , Temporal Lobe/diagnostic imaging
3.
Hippocampus ; 30(11): 1209-1227, 2020 11.
Article in English | MEDLINE | ID: mdl-32830426

ABSTRACT

A functional gradient has been proposed across the medial temporal lobes (MTL) such that the anterior MTL is thought to support processing of individual items (e.g., item memory and complex object perception), whereas the posterior MTL is thought to support item-context retrieval (e.g., source memory). Whereas functional imaging studies have provided evidence supporting this anatomical organization, results from structural analyses remain inconclusive. The current study examined the relationship between volume of MTL regions of interest (ROIs), and performance on a source memory task and a fine-grain complex object perception task, in healthy young adults (mean age = 21.5, range = 18-29). Using a semiautomated procedure, we segmented the parahippocampal and perirhinal cortices (PHC, PRC), posteromedial and anterolateral entorhinal cortices (pmERC, alERC), and posterior and anterior hippocampus (postHC, antHC) on high-resolution T2-weighted MRIs. Regional volumes were computed as proportions of intracranial volume, and as posterior-anterior volumetric ratios (PHC:PRC, pmERC:alERC, postHC:antHC). Partial-least squares regressions were applied to predict source and item memory, and perceptual discrimination accuracy, based on ROI and ratio volumes. In our ROI regressions, we found that postHC volume was positively correlated with a latent factor predicting source memory, and PRC and antHC volumes were negatively correlated to this latent factor. In our ratio regressions, we observed an effect relating the posterior-anterior distribution of gray matter across the MTL with source memory. Our results demonstrate differential associations between anterior and posterior MTL and source memory performance. Findings from this study highlight the importance of considering patterns of structure-behavior associations in the neurobiology of episodic memory.


Subject(s)
Memory, Episodic , Mental Recall/physiology , Psychomotor Performance/physiology , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Adolescent , Adult , Female , Forecasting , Humans , Magnetic Resonance Imaging/methods , Male , Memory/physiology , Organ Size/physiology , Photic Stimulation/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...