Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 20(1): 221, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34006297

ABSTRACT

BACKGROUND: Efforts to study the biology of Plasmodium vivax liver stages, particularly the latent hypnozoites, have been hampered by the limited availability of P. vivax sporozoites. Anopheles stephensi is a major urban malaria vector in Goa and elsewhere in South Asia. Using P. vivax patient blood samples, a series of standard membrane-feeding experiments were performed with An. stephensi under the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA). The goal was to understand the dynamics of parasite development in mosquitoes as well as the production of P. vivax sporozoites. To obtain a robust supply of P. vivax sporozoites, mosquito-rearing and mosquito membrane-feeding techniques were optimized, which are described here. METHODS: Membrane-feeding experiments were conducted using both wild and laboratory-colonized An. stephensi mosquitoes and patient-derived P. vivax collected at the Goa Medical College and Hospital. Parasite development to midgut oocysts and salivary gland sporozoites was assessed on days 7 and 14 post-feeding, respectively. The optimal conditions for mosquito rearing and feeding were evaluated to produce high-quality mosquitoes and to yield a high sporozoite rate, respectively. RESULTS: Laboratory-colonized mosquitoes could be starved for a shorter time before successful blood feeding compared with wild-caught mosquitoes. Optimizing the mosquito-rearing methods significantly increased mosquito survival. For mosquito feeding, replacing patient plasma with naïve serum increased sporozoite production > two-fold. With these changes, the sporozoite infection rate was high (> 85%) and resulted in an average of ~ 22,000 sporozoites per mosquito. Some mosquitoes reached up to 73,000 sporozoites. Sporozoite production could not be predicted from gametocyte density but could be predicted by measuring oocyst infection and oocyst load. CONCLUSIONS: Optimized conditions for the production of high-quality P. vivax sporozoite-infected An. stephensi were established at a field site in South West India. This report describes techniques for producing a ready resource of P. vivax sporozoites. The improved protocols can help in future research on the biology of P. vivax liver stages, including hypnozoites, in India, as well as the development of anti-relapse interventions for vivax malaria.


Subject(s)
Anopheles/parasitology , Mosquito Vectors/parasitology , Plasmodium vivax/physiology , Animals , Female , India , Plasmodium vivax/growth & development , Sporozoites/growth & development , Sporozoites/physiology
2.
Article in English | MEDLINE | ID: mdl-31332065

ABSTRACT

Artemisinin-based combination therapy (ACT) has been used to treat uncomplicated Plasmodium falciparum infections in India since 2004. Since 2008, a decrease in artemisinin effectiveness has been seen throughout the Greater Mekong Subregion. The geographic proximity and ecological similarities of northeastern India to Southeast Asia may differentially affect the long-term management and sustainability of ACT in India. In order to collect baseline data on variations in ACT sensitivity in Indian parasites, 12 P. falciparum isolates from northeast India and 10 isolates from southwest India were studied in vitro Ring-stage survival assay (RSA) showed reduced sensitivity to dihydroartemisinin in 50% of the samples collected in northeast India in 2014 and 2015. Two of the 10 assayed samples from the southwest region of India from as far back as 2012 also showed decreased sensitivity to artemisinin. In both these regions, kelch gene sequences were not predictive of reduced artemisinin sensitivity, as measured by RSA. The present data justify future investments in integrated approaches involving clinical follow-up studies, in vitro survival assays, and molecular markers for tracking potential changes in the effectiveness of artemisinin against P. falciparum throughout India.


Subject(s)
Artemisinins/pharmacology , Life Cycle Stages/drug effects , Malaria, Falciparum/epidemiology , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Antimalarials/pharmacology , Base Sequence , Drug Resistance , Erythrocytes/drug effects , Erythrocytes/parasitology , Gene Expression , Geography , Humans , India/epidemiology , Kelch Repeat , Life Cycle Stages/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism
3.
Malar J ; 16(1): 284, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28693607

ABSTRACT

BACKGROUND: In global efforts to track mosquito infectivity and parasite elimination, controlled mosquito-feeding experiments can help in understanding the dynamics of parasite development in vectors. Anopheles stephensi is often accepted as the major urban malaria vector that transmits Plasmodium in Goa and elsewhere in South Asia. However, much needs to be learned about the interactions of Plasmodium vivax with An. stephensi. As a component of the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA), a series of membrane-feeding experiments with wild An. stephensi and P. vivax were carried out to better understand this vector-parasite interaction. METHODS: Wild An. stephensi larvae and pupae were collected from curing water in construction sites in the city of Ponda, Goa, India. The larvae and pupae were reared at the MESA ICEMR insectary within the National Institute of Malaria Research (NIMR) field unit in Goa until they emerged into adult mosquitoes. Blood for membrane-feeding experiments was obtained from malaria patients at the local Goa Medical College and Hospital who volunteered for the study. Parasites were counted by Miller reticule technique and correlation between gametocytaemia/parasitaemia and successful mosquito infection was studied. RESULTS: A weak but significant correlation was found between patient blood gametocytaemia/parasitaemia and mosquito oocyst load. No correlation was observed between gametocytaemia/parasitaemia and oocyst infection rates, and between gametocyte sex ratio and oocyst load. When it came to development of the parasite in the mosquito, a strong positive correlation was observed between oocyst midgut levels and sporozoite infection rates, and between oocyst levels and salivary gland sporozoite loads. Kinetic studies showed that sporozoites appeared in the salivary gland as early as day 7, post-infection. CONCLUSIONS: This is the first study in India to carry out membrane-feeding experiments with wild An. stephensi and P. vivax. A wide range of mosquito infection loads and infection rates were observed, pointing to a strong interplay between parasite, vector and human factors. Most of the present observations are in agreement with feeding experiments conducted with P. vivax elsewhere in the world.


Subject(s)
Anopheles/parasitology , Plasmodium vivax/physiology , Animals , Humans , India , Oocytes/physiology , Parasite Load , Parasitemia/blood , Plasmodium vivax/growth & development , Sporozoites/isolation & purification
4.
Malar J ; 15(1): 569, 2016 11 25.
Article in English | MEDLINE | ID: mdl-27884146

ABSTRACT

BACKGROUND: Malaria remains an important cause of morbidity and mortality in India. Though many comprehensive studies have been carried out in Africa and Southeast Asia to characterize and examine determinants of Plasmodium falciparum and Plasmodium vivax malaria pathogenesis, fewer have been conducted in India. METHODS: A prospective study of malaria-positive individuals was conducted at Goa Medical College and Hospital (GMC) from 2012 to 2015 to identify demographic, diagnostic and clinical indicators associated with P. falciparum and P. vivax infection on univariate analysis. RESULTS: Between 2012 and 2015, 74,571 febrile individuals, 6287 (8.4%) of whom were malaria positive, presented to GMC. The total number of malaria cases at GMC increased more than two-fold over four years, with both P. vivax and P. falciparum cases present year-round. Some 1116 malaria-positive individuals (mean age = 27, 91% male), 88.2% of whom were born outside of Goa and 51% of whom were construction workers, were enroled in the study. Of 1088 confirmed malaria-positive patients, 77.0% had P. vivax, 21.0% had P. falciparum and 2.0% had mixed malaria. Patients over 40 years of age and with P. falciparum infection were significantly (p < 0.001) more likely to be hospitalised than younger and P. vivax patients, respectively. While approximately equal percentages of hospitalised P. falciparum (76.6%) and P. vivax (78.9%) cases presented with at least one WHO severity indicator, a greater percentage of P. falciparum inpatients presented with at least two (43.9%, p < 0.05) and at least three (29.9%, p < 0.01) severity features. There were six deaths among the 182 hospitalised malaria positive patients, all of whom had P. falciparum. CONCLUSION: During the four year study period at GMC, the number of malaria cases increased substantially and the greatest burden of severe disease was contributed by P. falciparum.


Subject(s)
Malaria, Falciparum/pathology , Malaria, Vivax/pathology , Adolescent , Adult , Aged , Child , Child, Preschool , Demography , Female , Humans , Incidence , India/epidemiology , Infant , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Vivax/diagnosis , Malaria, Vivax/epidemiology , Male , Middle Aged , Prospective Studies , Tertiary Care Centers , Young Adult
5.
Malar J ; 15: 33, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26794408

ABSTRACT

BACKGROUND: Culture-adapted Plasmodium falciparum parasites can offer deeper understanding of geographic variations in drug resistance, pathogenesis and immune evasion. To help ground population-based calculations and inferences from culture-adapted parasites, the complete range of parasites from a study area must be well represented in any collection. To this end, standardized adaptation methods and determinants of successful in vitro adaption were sought. METHODS: Venous blood was collected from 33 P. falciparum-infected individuals at Goa Medical College and Hospital (Bambolim, Goa, India). Culture variables such as whole blood versus washed blood, heat-inactivated plasma versus Albumax, and different starting haematocrit levels were tested on fresh blood samples from patients. In vitro adaptation was considered successful when two four-fold or greater increases in parasitaemia were observed within, at most, 33 days of attempted culture. Subsequently, parasites from the same patients, which were originally cryopreserved following blood draw, were retested for adaptability for 45 days using identical host red blood cells (RBCs) and culture media. RESULTS: At a new endemic area research site, ~65% of tested patient samples, with varied patient history and clinical presentation, were successfully culture-adapted immediately after blood collection. Cultures set up at 1% haematocrit and 0.5% Albumax adapted most rapidly, but no single test condition was uniformly fatal to culture adaptation. Success was not limited by low patient parasitaemia nor by patient age. Some parasites emerged even after significant delays in sample processing and even after initiation of treatment with anti-malarials. When 'day 0' cryopreserved samples were retested in parallel many months later using identical host RBCs and media, speed to adaptation appeared to be an intrinsic property of the parasites collected from individual patients. CONCLUSIONS: Culture adaptation of P. falciparum in a field setting is formally shown to be robust. Parasites were found to have intrinsic variations in adaptability to culture conditions, with some lines requiring longer attempt periods for successful adaptation. Quantitative approaches described here can help describe phenotypic diversity of field parasite collections with precision. This is expected to improve population-based extrapolations of findings from field-derived fresh culture-adapted parasites to broader questions of public health importance.


Subject(s)
Plasmodium falciparum/cytology , Cells, Cultured , Cryopreservation , Erythrocytes/parasitology , Genotyping Techniques , Humans , Plasmodium falciparum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...