Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(4): 113979, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38517887

ABSTRACT

Bacterial polyhydroxyalkanoates (PHAs) have emerged as promising eco-friendly alternatives to petroleum-based plastics since they are synthesized from renewable resources and offer exceptional properties. However, their production is limited to the stationary growth phase under nutrient-limited conditions, requiring customized strategies and costly two-phase bioprocesses. In this study, we tackle these challenges by employing a model-driven approach to reroute carbon flux and remove regulatory constraints using synthetic biology. We construct a collection of Pseudomonas putida-overproducing strains at the expense of plastics and lignin-related compounds using growth-coupling approaches. PHA production was successfully achieved during growth phase, resulting in the production of up to 46% PHA/cell dry weight while maintaining a balanced carbon-to-nitrogen ratio. Our strains are additionally validated under an upcycling scenario using enzymatically hydrolyzed polyethylene terephthalate as a feedstock. These findings have the potential to revolutionize PHA production and address the global plastic crisis by overcoming the complexities of traditional PHA production bioprocesses.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Pseudomonas putida/metabolism , Polyhydroxyalkanoates/metabolism , Polyhydroxyalkanoates/biosynthesis , Nutrients/metabolism , Carbon/metabolism , Nitrogen/metabolism , Polyethylene Terephthalates/metabolism
2.
Front Bioeng Biotechnol ; 11: 1275036, 2023.
Article in English | MEDLINE | ID: mdl-38026847

ABSTRACT

Designing cell factories for the production of novel polyhydroxyalkanoates (PHAs) via smart metabolic engineering is key to obtain à la carte materials with tailored physicochemical properties. To this end, we used the model medium-chain-length-PHA producing bacterium, P. putida KT2440 as a chassis, which is characterized by its metabolic versatility and stress tolerance. Different PHA biosynthetic modules were assembled in expression plasmids using the Golden gate/MoClo modular assembly technique to implement an orthogonal short-chain-lengh-PHA (scl-PHA) switch in a "deaf" PHA mutant. This was specifically constructed to override endogenous multilevel regulation of PHA synthesis in the native strain. We generated a panel of engineered approaches carrying the genes from Rhodospirillum rubrum, Cupriavidus necator and Pseudomonas pseudoalcaligenes, demonstrating that diverse scl-PHAs can be constitutively produced in the chassis strain to varying yields from 23% to 84% PHA/CDW. Co-feeding assays of the most promising engineered strain harboring the PHA machinery from C. necator resulted to a panel of PHBV from 0.6% to 19% C5 monomeric incorporation. Chromosomally integrated PHA machineries with high PhaCCn synthase dosage successfully resulted in 68% PHA/CDW production. Interestingly, an inverse relationship between PhaC synthase dosage and granule size distribution was demonstrated in the heterologous host. In this vein, it is proposed the key involvement of inclusion body protein IbpA to the heterologous production of tailored PHA in P. putida KT2440.

3.
mBio ; 13(1): e0179421, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35038900

ABSTRACT

Polyhydroxyalkanoates (PHAs) are polyesters produced by numerous microorganisms for energy and carbon storage. Simultaneous synthesis and degradation of PHA drives a dynamic cycle linked to the central carbon metabolism, which modulates numerous and diverse bacterial processes, such as stress endurance, pathogenesis, and persistence. Here, we analyze the role of the PHA cycle in conferring robustness to the model bacterium P. putida KT2440. To assess the effect of this cycle in the cell, we began by constructing a PHA depolymerase (PhaZ) mutant strain that had its PHA cycle blocked. We then restored the flux through the cycle in the context of an engineered library of P. putida strains harboring differential levels of PhaZ. High-throughput phenotyping analyses of this collection of strains revealed significant changes in response to PHA cycle performance impacting cell number and size, PHA accumulation, and production of extracellular (R)-hydroxyalkanoic acids. To understand the metabolic changes at the system level due to PHA turnover, we contextualized these physiological data using the genome-scale metabolic model iJN1411. Model-based predictions suggest successive metabolic steady states during the growth curve and an important carbon flux rerouting driven by the activity of the PHA cycle. Overall, we demonstrate that modulating the activity of the PHA cycle gives us control over the carbon metabolism of P. putida, which in turn will give us the ability to tailor cellular mechanisms driving stress tolerance, e.g., defenses against oxidative stress, and any potential biotechnological applications. IMPORTANCE Despite large research efforts devoted to understanding the flexible metabolism of Pseudomonas beyond the role of key regulatory players, the metabolic basis powering the dynamic control of its biological fitness under disturbance conditions remains largely unknown. Among other metabolic hubs, the so-called PHA cycle, involving simultaneous synthesis and degradation of PHAs, is emerging as a pivotal metabolic trait powering metabolic robustness and resilience in this bacterial group. Here, we provide evidence suggesting that metabolic states in Pseudomonas can be anticipated, controlled, and engineered by tailoring the flux through the PHA cycle. Overall, our study suggests that the PHA cycle is a promising metabolic target toward achieving control over bacterial metabolic robustness. This is likely to open up a broad range of applications in areas as diverse as pathogenesis and biotechnology.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Pseudomonas putida/metabolism , Polyhydroxyalkanoates/metabolism , Biotechnology , Carbon/metabolism
4.
Biotechnol J ; 16(3): e2000165, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33085217

ABSTRACT

Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.


Subject(s)
Polyhydroxyalkanoates , Pseudomonas putida , Carbon , Metabolic Engineering , Pseudomonas , Pseudomonas putida/genetics
5.
Mol Microbiol ; 111(5): 1283-1301, 2019 05.
Article in English | MEDLINE | ID: mdl-30741447

ABSTRACT

A proper response to elevated extracellular calcium levels helps to most organisms to keep this secondary messenger under strict control, thereby preventing inadequate activation or inhibition of many regulatory activities into cells. In fungi, the calcineurin responsive zinc-finger Crz1/CrzA transcription factor transduces calcium signaling to gene expression. In Aspergillus nidulans, absence of CrzA activity leads to alkaline pH sensitivity and loss of tolerance to high levels of extracellular calcium. Disruption of calcium uptake mechanisms or the presence of high levels of Mg2+ partially suppresses this calcium-sensitive phenotype of null crzA strain. The effects of Mg2+ on CrzA phosphorylation and perturbations that reduce calcineurin phosphatase activity on CrzA demonstrate that the calcium sensitive phenotype of null crzA strain is a consequence of up-regulated calcineurin activity under calcium-induced conditions.


Subject(s)
Aspergillus nidulans/enzymology , Calcineurin/metabolism , Fungal Proteins/metabolism , Magnesium/pharmacology , Aspergillus nidulans/drug effects , Aspergillus nidulans/genetics , Calcineurin/genetics , Calcium/metabolism , Calcium Signaling , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Mutation , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Zinc Fingers
6.
Eur J Med Chem ; 116: 281-289, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27131621

ABSTRACT

Invasive aspergillosis (IA) is one of the most severe forms of fungi infection. IA disease is mainly due to Aspergillus fumigatus, an air-borne opportunistic pathogen. Mortality rate caused by IA is still very high (50-95%), because of difficulty in early diagnostics and reduced antifungal treatment options, thus new and efficient drugs are necessary. The aim of this work is, using Aspergillus nidulans as non-pathogen model, to develop efficient drugs to treat IA. The recent discovered role of glycogen synthase kinase-3 homologue, GskA, in A. fumigatus human infection and our previous experience on human GSK-3 inhibitors focus our attention on this kinase as a target for the development of antifungal drugs. With the aim to identify effective inhibitors of colonial growth of A. fumigatus we use A. nidulans as an accurate model for in vivo and in silico studies. Several well-known human GSK-3ß inhibitors were tested for inhibition of A. nidulans colony growth. Computational tools as docking studies and binding site prediction was used to explain the different biological profile of the tested inhibitors. Three of the five tested hGSK3ß inhibitors are able to reduce completely the colonial growth by covalent bind to the enzyme. Therefore these compounds may be useful in different applications to eradicate IA.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/growth & development , Drug Repositioning , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Amino Acid Sequence , Antifungal Agents/metabolism , Enzyme Inhibitors/metabolism , Glycogen Synthase Kinase 3/chemistry , Glycogen Synthase Kinase 3/metabolism , Humans , Molecular Docking Simulation , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...