Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
bioRxiv ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005402

ABSTRACT

Proper regulation of organelle dynamics is critical for cellular function, but the mechanisms coordinating multiple organelles remain poorly understood. Here we show that actin polymerization mediated by the endoplasmic reticulum (ER)-anchored formin INF2 acts as a master regulator of organelle morphology and movement. Using high-resolution imaging, we demonstrate that INF2-polymerized actin filaments assemble at ER contact sites on mitochondria, endosomes, and lysosomes just prior to their fission. Genetic manipulation of INF2 activity alters the size, shape and motility of all three organelles. Our findings reveal a conserved mechanism by which the ER uses actin polymerization to control diverse organelles, with implications for understanding organelle dysfunction in neurodegenerative and other diseases. This work establishes INF2-mediated actin assembly as a central coordinator of organelle dynamics and inter-organelle communication.

2.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38948743

ABSTRACT

Cochlear hair cell stereocilia bundles are key organelles required for normal hearing. Often, deafness mutations cause aberrant stereocilia heights or morphology that are visually apparent but challenging to quantify. Actin-based structures, stereocilia are easily and most often labeled with phalloidin then imaged with 3D confocal microscopy. Unfortunately, phalloidin non-specifically labels all the actin in the tissue and cells and therefore results in a challenging segmentation task wherein the stereocilia phalloidin signal must be separated from the rest of the tissue. This can require many hours of manual human effort for each 3D confocal image stack. Currently, there are no existing software pipelines that provide an end-to-end automated solution for 3D stereocilia bundle instance segmentation. Here we introduce VASCilia, a Napari plugin designed to automatically generate 3D instance segmentation and analysis of 3D confocal images of cochlear hair cell stereocilia bundles stained with phalloidin. This plugin combines user-friendly manual controls with advanced deep learning-based features to streamline analyses. With VASCilia, users can begin their analysis by loading image stacks. The software automatically preprocesses these samples and displays them in Napari. At this stage, users can select their desired range of z-slices, adjust their orientation, and initiate 3D instance segmentation. After segmentation, users can remove any undesired regions and obtain measurements including volume, centroids, and surface area. VASCilia introduces unique features that measures bundle heights, determines their orientation with respect to planar polarity axis, and quantifies the fluorescence intensity within each bundle. The plugin is also equipped with trained deep learning models that differentiate between inner hair cells and outer hair cells and predicts their tonotopic position within the cochlea spiral. Additionally, the plugin includes a training section that allows other laboratories to fine-tune our model with their own data, provides responsive mechanisms for manual corrections through event-handlers that check user actions, and allows users to share their analyses by uploading a pickle file containing all intermediate results. We believe this software will become a valuable resource for the cochlea research community, which has traditionally lacked specialized deep learning-based tools for obtaining high-throughput image quantitation. Furthermore, we plan to release our code along with a manually annotated dataset that includes approximately 55 3D stacks featuring instance segmentation. This dataset comprises a total of 1,870 instances of hair cells, distributed between 410 inner hair cells and 1,460 outer hair cells, all annotated in 3D. As the first open-source dataset of its kind, we aim to establish a foundational resource for constructing a comprehensive atlas of cochlea hair cell images. Together, this open-source tool will greatly accelerate the analysis of stereocilia bundles and demonstrates the power of deep learning-based algorithms for challenging segmentation tasks in biological imaging research. Ultimately, this initiative will support the development of foundational models adaptable to various species, markers, and imaging scales to advance and accelerate research within the cochlea research community.

3.
bioRxiv ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38948763

ABSTRACT

In this paper, we introduce a new, open-source software developed in Python for analyzing Auditory Brainstem Response (ABR) waveforms. ABRs are a far-field recording of synchronous neural activity generated by the auditory fibers in the ear in response to sound, and used to study acoustic neural information traveling along the ascending auditory pathway. Common ABR data analysis practices are subject to human interpretation and are labor-intensive, requiring manual annotations and visual estimation of hearing thresholds. The proposed new Auditory Brainstem Response Analyzer (ABRA) software is designed to facilitate the analysis of ABRs by supporting batch data import/export, waveform visualization, and statistical analysis. Techniques implemented in this software include algorithmic peak finding, threshold estimation, latency estimation, time warping for curve alignment, and 3D plotting of ABR waveforms over stimulus frequencies and decibels. The excellent performance on a large dataset of ABR collected from three labs in the field of hearing research that use different experimental recording settings illustrates the efficacy, flexibility, and wide utility of ABRA.

4.
bioRxiv ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38915557

ABSTRACT

PSSR2 improves and expands on the previously established PSSR (Point-Scanning Super-Resolution) workflow for simultaneous super-resolution and denoising of undersampled microscopy data. PSSR2 is designed to put state-of-the-art technology into the hands of the general microscopy and biology research community, enabling user-friendly implementation of PSSR workflows with little to no programming experience required, especially through its integrated CLI and Napari plugin.

5.
bioRxiv ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38915491

ABSTRACT

Producing dense 3D reconstructions from biological imaging data is a challenging instance segmentation task that requires significant ground-truth training data for effective and accurate deep learning-based models. Generating training data requires intense human effort to annotate each instance of an object across serial section images. Our focus is on the especially complicated brain neuropil, comprising an extensive interdigitation of dendritic, axonal, and glial processes visualized through serial section electron microscopy. We developed a novel deep learning-based method to generate dense 3D segmentations rapidly from sparse 2D annotations of a few objects on single sections. Models trained on the rapidly generated segmentations achieved similar accuracy as those trained on expert dense ground-truth annotations. Human time to generate annotations was reduced by three orders of magnitude and could be produced by non-expert annotators. This capability will democratize generation of training data for large image volumes needed to achieve brain circuits and measures of circuit strengths.

6.
J Am Soc Echocardiogr ; 37(8): 725-735, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38740271

ABSTRACT

BACKGROUND: Age and sex can be estimated using artificial intelligence on the basis of various sources. The aims of this study were to test whether convolutional neural networks could be trained to estimate age and predict sex using standard transthoracic echocardiography and to evaluate the prognostic implications. METHODS: The algorithm was trained on 76,342 patients, validated in 22,825 patients, and tested in 20,960 patients. It was then externally validated using data from a different hospital (n = 556). Finally, a prospective cohort of handheld point-of-care ultrasound devices (n = 319; ClinicalTrials.gov identifier NCT05455541) was used to confirm the findings. A multivariate Cox regression model was used to investigate the association between age estimation and chronologic age with overall survival. RESULTS: The mean absolute error in age estimation was 4.9 years, with a Pearson correlation coefficient of 0.922. The probabilistic value of sex had an overall accuracy of 96.1% and an area under the curve of 0.993. External validation and prospective study cohorts yielded consistent results. Finally, survival analysis demonstrated that age prediction ≥5 years vs chronologic age was associated with an independent 34% increased risk for death during follow-up (P < .001). CONCLUSIONS: Applying artificial intelligence to standard transthoracic echocardiography allows the prediction of sex and the estimation of age. Machine-based estimation is an independent predictor of overall survival and, with further evaluation, can be used for risk stratification and estimation of biological age.


Subject(s)
Artificial Intelligence , Echocardiography , Humans , Male , Female , Echocardiography/methods , Echocardiography/statistics & numerical data , Middle Aged , Aged , Prospective Studies , Adult , Age Factors , Algorithms , Prognosis , Risk Assessment/methods , Survival Rate/trends
7.
Sci Data ; 11(1): 416, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653806

ABSTRACT

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Subject(s)
Cochlea , Animals , Mice , Guinea Pigs , Humans , Rats , Swine , Hair Cells, Auditory , Microscopy, Fluorescence , Machine Learning
8.
Aging Biol ; 12024.
Article in English | MEDLINE | ID: mdl-38500536

ABSTRACT

There is considerable interest in whether sensory deficiency is associated with the development of Alzheimer's disease (AD). Notably, the relationship between hearing impairment and AD is of high relevance but still poorly understood. In this study, we found early-onset hearing loss in two AD mouse models, 3xTgAD and 3xTgAD/Polß+/-. The 3xTgAD/Polß+/- mouse is DNA repair deficient and has more humanized AD features than the 3xTgAD. Both AD mouse models showed increased auditory brainstem response (ABR) thresholds between 16 and 32 kHz at 4 weeks of age, much earlier than any AD cognitive and behavioral changes. The ABR thresholds were significantly higher in 3xTgAD/Polß+/- mice than in 3xTgAD mice at 16 kHz, and distortion product otoacoustic emission signals were reduced, indicating that DNA damage may be a factor underlying early hearing impairment in AD. Poly ADP-ribosylation and protein expression levels of DNA damage markers increased significantly in the cochlea of the AD mice but not in the adjacent auditory cortex. Phosphoglycerate mutase 2 levels and the number of synaptic ribbons in the presynaptic zones of inner hair cells were decreased in the cochlea of the AD mice. Furthermore, the activity of sirtuin 3 was downregulated in the cochlea of these mice, indicative of impaired mitochondrial function. Taken together, these findings provide new insights into potential mechanisms for hearing dysfunction in AD and suggest that DNA damage in the cochlea might contribute to the development of early hearing loss in AD.

9.
PLoS Genet ; 20(3): e1011211, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498576

ABSTRACT

Age-related hearing loss (ARHL) is a common sensory impairment with complex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer hair cells, and a decreased phalloidin intensities of CP. Ultrastructural analysis revealed loss of the shortest row of stereocilia in the basal turn of the cochlea, and alterations in the cuticular plate surrounding stereocilia rootlets. Importantly, the hearing and HC phenotype in TG mice phenocopied that of the KO mice. These findings suggest that balanced expression of Fhod3 is critical for proper CP and stereocilia structure and function. Further investigation of Fhod3 related hearing impairment mechanisms may lend new insight towards the myriad mechanisms underlying ARHL, which in turn could facilitate the development of therapeutic strategies for ARHL.


Subject(s)
Actins , Hearing Loss, High-Frequency , Animals , Mice , Actins/genetics , Actins/metabolism , Cochlea/metabolism , Formins/genetics , Genome-Wide Association Study , Hearing , Mice, Knockout , Polymerization
10.
Nat Cell Biol ; 26(2): 194-206, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332353

ABSTRACT

Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.


Subject(s)
DNA, Mitochondrial , DNA-Binding Proteins , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA Replication , Endosomes/metabolism , Nucleotidyltransferases/genetics , Inflammation/genetics , Mitochondrial Proteins/metabolism
11.
Nat Biotechnol ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418648

ABSTRACT

Astrocytes, the most abundant glial cell type in the brain, are underrepresented in traditional cortical organoid models due to the delayed onset of cortical gliogenesis. Here we introduce a new glia-enriched cortical organoid model that exhibits accelerated astrogliogenesis. We demonstrated that induction of a gliogenic switch in a subset of progenitors enabled the rapid derivation of astroglial cells, which account for 25-31% of the cell population within 8-10 weeks of differentiation. Intracerebral transplantation of these organoids reliably generated a diverse repertoire of cortical neurons and anatomical subclasses of human astrocytes. Spatial transcriptome profiling identified layer-specific expression patterns among distinct subclasses of astrocytes within organoid transplants. Using an in vivo acute neuroinflammation model, we identified a subpopulation of astrocytes that rapidly activates pro-inflammatory pathways upon cytokine stimulation. Additionally, we demonstrated that CD38 signaling has a crucial role in mediating metabolic and mitochondrial stress in reactive astrocytes. This model provides a robust platform for investigating human astrocyte function.

12.
Nat Commun ; 15(1): 265, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177161

ABSTRACT

Myelin is essential for rapid nerve signaling and is increasingly found to play important roles in learning and in diverse diseases of the CNS. Morphological parameters of myelin such as sheath length are thought to precisely tune conduction velocity, but the mechanisms controlling sheath morphology are poorly understood. Local calcium signaling has been observed in nascent myelin sheaths and can be modulated by neuronal activity. However, the role of calcium signaling in sheath formation remains incompletely understood. Here, we use genetic tools to attenuate oligodendrocyte calcium signaling during myelination in the developing mouse CNS. Surprisingly, genetic calcium attenuation does not grossly affect the number of myelinated axons or myelin thickness. Instead, calcium attenuation causes myelination defects resulting in shorter, dysmorphic sheaths. Mechanistically, calcium attenuation reduces actin filaments in oligodendrocytes, and an intact actin cytoskeleton is necessary and sufficient to achieve accurate myelin morphology. Together, our work reveals a cellular mechanism required for accurate CNS myelin formation and may provide mechanistic insight into how oligodendrocytes respond to neuronal activity to sculpt and refine myelin sheaths.


Subject(s)
Actins , Myelin Sheath , Animals , Mice , Myelin Sheath/metabolism , Actins/metabolism , Calcium/metabolism , Calcium Signaling , Oligodendroglia , Axons/physiology
13.
Nat Methods ; 21(2): 322-330, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38238557

ABSTRACT

The development of high-resolution microscopes has made it possible to investigate cellular processes in 3D and over time. However, observing fast cellular dynamics remains challenging because of photobleaching and phototoxicity. Here we report the implementation of two content-aware frame interpolation (CAFI) deep learning networks, Zooming SlowMo and Depth-Aware Video Frame Interpolation, that are highly suited for accurately predicting images in between image pairs, therefore improving the temporal resolution of image series post-acquisition. We show that CAFI is capable of understanding the motion context of biological structures and can perform better than standard interpolation methods. We benchmark CAFI's performance on 12 different datasets, obtained from four different microscopy modalities, and demonstrate its capabilities for single-particle tracking and nuclear segmentation. CAFI potentially allows for reduced light exposure and phototoxicity on the sample for improved long-term live-cell imaging. The models and the training and testing data are available via the ZeroCostDL4Mic platform.


Subject(s)
Deep Learning , Microscopy , Single Molecule Imaging , Motion
14.
Cell Rep ; 42(12): 113466, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38039131

ABSTRACT

Biallelic mutations in the gene that encodes the enzyme N-glycanase 1 (NGLY1) cause a rare disease with multi-symptomatic features including developmental delay, intellectual disability, neuropathy, and seizures. NGLY1's activity in human neural cells is currently not well understood. To understand how NGLY1 gene loss leads to the specific phenotypes of NGLY1 deficiency, we employed direct conversion of NGLY1 patient-derived induced pluripotent stem cells (iPSCs) to functional cortical neurons. Transcriptomic, proteomic, and functional studies of iPSC-derived neurons lacking NGLY1 function revealed several major cellular processes that were altered, including protein aggregate-clearing functionality, mitochondrial homeostasis, and synaptic dysfunctions. These phenotypes were rescued by introduction of a functional NGLY1 gene and were observed in iPSC-derived mature neurons but not astrocytes. Finally, laser capture microscopy followed by mass spectrometry provided detailed characterization of the composition of protein aggregates specific to NGLY1-deficient neurons. Future studies will harness this knowledge for therapeutic development.


Subject(s)
Protein Aggregates , Proteomics , Humans , Mutation/genetics , Mitochondria/metabolism , Neurons/metabolism , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase
15.
Front Cell Neurosci ; 17: 1256619, 2023.
Article in English | MEDLINE | ID: mdl-38094513

ABSTRACT

Age-related hearing loss (ARHL) is the most common cause of hearing loss and one of the most prevalent conditions affecting the elderly worldwide. Despite evidence from our lab and others about its polygenic nature, little is known about the specific genes, cell types, and pathways involved in ARHL, impeding the development of therapeutic interventions. In this manuscript, we describe, for the first time, the complete cell-type specific transcriptome of the aging mouse cochlea using snRNA-seq in an outbred mouse model in relation to auditory threshold variation. Cochlear cell types were identified using unsupervised clustering and annotated via a three-tiered approach-first by linking to expression of known marker genes, then using the NSForest algorithm to select minimum cluster-specific marker genes and reduce dimensional feature space for statistical comparison of our clusters with existing publicly-available data sets on the gEAR website, and finally, by validating and refining the annotations using Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH) and the cluster-specific marker genes as probes. We report on 60 unique cell-types expanding the number of defined cochlear cell types by more than two times. Importantly, we show significant specific cell type increases and decreases associated with loss of hearing acuity implicating specific subsets of hair cell subtypes, ganglion cell subtypes, and cell subtypes within the stria vascularis in this model of ARHL. These results provide a view into the cellular and molecular mechanisms responsible for age-related hearing loss and pathways for therapeutic targeting.

16.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693382

ABSTRACT

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

17.
J Travel Med ; 30(8)2023 12 28.
Article in English | MEDLINE | ID: mdl-37606241

ABSTRACT

BACKGROUND: Artemisinin-based combination therapies (ACTs) are recommended as first-line treatment against uncomplicated Plasmodium falciparum infection. Mutations in the PfKelch13 (PF3D7_1343700) gene led to resistance to artemisinin in Southeast Asia. Mutations in the Pfcoronin (PF3D7_1251200) gene confer reduced artemisinin susceptibility in vitro to an African Plasmodium strain, but their role in clinical resistance has not been established. METHODS: We conducted a retrospective observational study of Israeli travellers returning from sub-Saharan Africa with P. falciparum malaria, including patients with artemether-lumefantrine (AL) failure. Blood samples from all malaria-positive patients are delivered to the national Parasitology Reference Laboratory along with personal information. Confirmation of malaria, species identification and comparative parasite load analysis were performed using real-time PCR. DNA extractions from stored leftover samples were analysed for the presence of mutations in Pfkelch13 and Pfcoronin. Age, weight, initial parasitaemia level and Pfcoronin status were compared in patients who failed treatment vs responders. RESULTS: During 2009-2020, 338 patients had P. falciparum malaria acquired in Africa. Of those, 15 (24-69 years old, 14 males) failed treatment with AL. Four were still parasitemic at the end of treatment, and 11 had malaria recrudescence. Treatment failure rates were 0% during 2009-2012, 9.1% during 2013-2016 and 17.4% during 2017-2020. In all patients, the Pfkelch13 propeller domain had a wild-type sequence. We did find the P76S mutation in the propeller domain of Pfcoronin in 4/15 (28.6%) of the treatment-failure cases compared to only 3/56 (5.5%) in the successfully treated patients (P = 0.027). CONCLUSION: AL treatment failure emergence was not associated with mutations in Pfkelch13. However, P76S mutation in the Pfcoronin gene was more frequently present in the treatment-failure group and merits further investigation. The increase of malaria incidence in sub-Saharan-Africa partly attributed to the COVID-19 pandemic might also reflect a wider spread of ACT resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Male , Humans , Young Adult , Adult , Middle Aged , Aged , Antimalarials/adverse effects , Artemether, Lumefantrine Drug Combination/therapeutic use , Pandemics , Plasmodium falciparum/genetics , Artemether/therapeutic use , Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Treatment Failure , Africa South of the Sahara , Drug Resistance/genetics
18.
bioRxiv ; 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37546952

ABSTRACT

Age-related hearing loss (ARHL) is a common sensory impairment with comlex underlying mechanisms. In our previous study, we performed a meta-analysis of genome-wide association studies (GWAS) in mice and identified a novel locus on chromosome 18 associated with ARHL specifically linked to a 32 kHz tone burst stimulus. Consequently, we investigated the role of Formin Homology 2 Domain Containing 3 (Fhod3), a newly discovered candidate gene for ARHL based on the GWAS results. We observed Fhod3 expression in auditory hair cells (HCs) and primarily localized at the cuticular plate (CP). To understand the functional implications of Fhod3 in the cochlea, we generated Fhod3 overexpression mice (Pax2-Cre+/-; Fhod3Tg/+) (TG) and HC-specific conditional knockout mice (Atoh1-Cre+/-; Fhod3fl/fl) (KO). Audiological assessments in TG mice demonstrated progressive high-frequency hearing loss, characterized by predominant loss of outer HCs and decrease phalloidin intensities of CP. Ultrastructural analysis revealed shortened stereocilia in the basal turn cochlea. Importantly, the hearing and HC phenotype in TG mice were replicated in KO mice. These findings indicate that Fhod3 plays a critical role in regulating actin dynamics in CP and stereocilia. Further investigation of Fhod3-related hearing impairment mechanisms may facilitate the development of therapeutic strategies for ARHL in humans.

19.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398222

ABSTRACT

Mitochondria play a crucial role in the regulation of cellular metabolism and signalling. Mitochondrial activity is modulated by the processes of mitochondrial fission and fusion, which are required to properly balance respiratory and metabolic functions, transfer material between mitochondria, and remove damaged or defective mitochondria. Mitochondrial fission occurs at sites of contact between the endoplasmic reticulum (ER) and mitochondria, and is dependent on the formation of mitochondria- and ER-associated actin filaments that drive the recruitment and activation of the fission GTPase DRP1. On the other hand, the role of mitochondria- and ER-associated actin filaments in mitochondrial fusion remains unknown. Here we show that preventing the formation of actin filaments on either mitochondria or the ER using organelle-targeted Disassembly-promoting, encodable Actin tools (DeActs) blocks both mitochondrial fission and fusion. We show that fusion but not fission is dependent on Arp2/3, and both fission and fusion are dependent on INF2 formin-dependent actin polymerization. Together, our work introduces a novel method for perturbing organelle-associated actin filaments, and demonstrates a previously unknown role for mitochondria- and ER-associated actin in mitochondrial fusion.

20.
Aging Cell ; 22(9): e13909, 2023 09.
Article in English | MEDLINE | ID: mdl-37395319

ABSTRACT

Age-related hearing loss (ARHL) is the most common sensory disability associated with human aging. Yet, there are no approved measures for preventing or treating this debilitating condition. With its slow progression, continuous and safe approaches are critical for ARHL treatment. Nicotinamide Riboside (NR), a NAD+ precursor, is well tolerated even for long-term use and is already shown effective in various disease models including Alzheimer's and Parkinson's disease. It has also been beneficial against noise-induced hearing loss and in hearing loss associated with premature aging. However, its beneficial impact on ARHL is not known. Using two different wild-type mouse strains, we show that long-term NR administration prevents the progression of ARHL. Through transcriptomic and biochemical analysis, we find that NR administration restores age-associated reduction in cochlear NAD+ levels, upregulates biological pathways associated with synaptic transmission and PPAR signaling, and reduces the number of orphan ribbon synapses between afferent auditory neurons and inner hair cells. We also find that NR targets a novel pathway of lipid droplets in the cochlea by inducing the expression of CIDEC and PLIN1 proteins that are downstream of PPAR signaling and are key for lipid droplet growth. Taken together, our results demonstrate the therapeutic potential of NR treatment for ARHL and provide novel insights into its mechanism of action.


Subject(s)
NAD , Presbycusis , Humans , Animals , Mice , Peroxisome Proliferator-Activated Receptors , Presbycusis/drug therapy , Presbycusis/prevention & control , Cochlea , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL