Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Clin Med ; 13(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731113

ABSTRACT

Background/Objectives: this systematic review aims to explore the efficacy and safety of the laparoscopic ligation of the inferior mesenteric artery (IMA) as an emerging trend for addressing a type II endoleak following endovascular aortic aneurysm repair (EVAR). Methods: A comprehensive literature search was conducted across several databases including Medline, Scopus, and the Cochrane Central Register of Controlled Trials, adhering to the PRISMA guidelines. The search focused on articles reporting on the laparoscopic ligation of the IMA for the treatment of a type II endoleak post-EVAR. Data were extracted regarding study characteristics, patient demographics, technical success rates, postoperative outcomes, and follow-up results. Results: Our analysis included ten case studies and two retrospective cohort studies, comprising a total of 26 patients who underwent a laparoscopic ligation of the IMA between 2000 and 2023. The mean age of the cohort was 72.3 years, with a male predominance (92.3%). The mean AAA diameter at the time of intervention was 69.7 mm. The technique demonstrated a high technical success rate of 92.3%, with a mean procedure time of 118.4 min and minimal blood loss. The average follow-up duration was 19.9 months, with 73% of patients experiencing regression of the aneurysmal sac, and no reports of an IMA-related type II endoleak during the follow-up period. Conclusions: The laparoscopic ligation of the IMA for a type II endoleak following EVAR presents a promising, minimally invasive alternative with high technical success rates and favorable postoperative outcomes. Despite its potential advantages, including reduced contrast agent use and radiation exposure, its application remains limited to specialized centers. The findings suggest the need for further research in larger prospective studies to validate the effectiveness of this procedure and potentially broaden its clinical adoption.

2.
Mol Biol Rep ; 51(1): 693, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796656

ABSTRACT

BACKGROUND: Testicular germ cell tumors (TGCTs) exhibit diverse biological and pathological features and are divided in two main types, seminomas and nonseminomatous germ cell tumors (NSGCTs). CD44 is a cell surface receptor, which is highly expressed in malignancies and is implicated in tumorigenesis affecting cell-matrix interactions and cell signaling. METHODS AND RESULTS: Here, we examined the expression of CD44 in tumor cell lines and in patients' material. We found that CD44 is over-expressed in TGCTs compared to normal tissues. Immunohistochemical staining in 71 tissue specimens demonstrated increased expression of CD44 in some patients, whereas CD44 was absent in normal tissue. In seminomas, a high percentage of tumor and stromal cells showed cytoplasmic and/or cell surface staining for CD44 as well as increased staining for CD44 in the tumor stroma was found in some cases. The increased expression of CD44 either in tumor cells or in stromal components was associated with tumor size, nodal metastasis, vascular/lymphatic invasion, and disease stage only in seminomas. The increased stromal expression of CD44 in TGCTs was positively associated with angiogenesis. CONCLUSIONS: CD44 may exhibit diverse biological functions in seminomas and NSGCTs. The expression of CD44 in tumor cells as well as in tumor stroma fosters an aggressive phenotype in seminomas and should be considered in disease treatment.


Subject(s)
Hyaluronan Receptors , Seminoma , Testicular Neoplasms , Humans , Hyaluronan Receptors/metabolism , Seminoma/metabolism , Seminoma/pathology , Seminoma/genetics , Male , Testicular Neoplasms/metabolism , Testicular Neoplasms/pathology , Adult , Cell Line, Tumor , Middle Aged , Neoplasms, Germ Cell and Embryonal/metabolism , Neoplasms, Germ Cell and Embryonal/pathology , Neoplasms, Germ Cell and Embryonal/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Immunohistochemistry/methods
3.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672477

ABSTRACT

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Subject(s)
Fibroblasts , Glioblastoma , Proteoglycans , Receptors, Interleukin-8B , Signal Transduction , Vesicular Transport Proteins , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Proteoglycans/metabolism , Proteoglycans/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Paracrine Communication , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Stromal Cells/metabolism , Stromal Cells/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology
4.
Am J Physiol Cell Physiol ; 325(3): C708-C720, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37575061

ABSTRACT

Breast cancer is the leading cause of cancer deaths for women worldwide. Endocrine therapies represent the cornerstone for hormone-dependent breast cancer treatment. However, in many cases, endocrine resistance is induced with poor prognosis for patients. In the current study, we have developed MCF-7 cell lines resistant to fulvestrant (MCF-7Fulv) and tamoxifen (MCF-7Tam) aiming at investigating mechanisms underlying resistance. Both resistant cell lines exerted lower proliferation capacity in two-dimensional (2-D) cultures but retain estrogen receptor α (ERα) expression and proliferate independent of the presence of estrogens. The established cell lines tend to be more aggressive exhibiting advanced capacity to form colonies, increased expression of epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and heterodimerization of ERBB family receptors and activation of EGFR downstream pathways like MEK/ERK1/2 and PI3K/AKT. Tyrosine kinase inhibitors tested against resistant MCF-7Fulv and MCF-7Tam cells showed moderate efficacy to inhibit cell proliferation, except for lapatinib, which concomitantly inhibits both EGFR and HER2 receptors and strongly reduced cell proliferation. Furthermore, increased autophagy was observed in resistant MCF-7Fulv and MCF-7Tam cells as shown by the presence of autophagosomes and increased Beclin-1 levels. The increased autophagy in resistant cells is not associated with increased apoptosis, suggesting a cytoprotective role for autophagy that may favor cells' survival and aggressiveness. Thus, by exploiting those underlying mechanisms, new targets could be established to overcome endocrine resistance.NEW & NOTEWORTHY The development of resistance to hormone therapy caused by both fulvestrant and tamoxifen promotes autophagy with concomitant apoptosis evasion, rendering cells capable of surviving and growing. The fact that resistance also triggers ERBB family signaling pathways, which are poorly inhibited by tyrosine kinase inhibitors might attribute to cells' aggressiveness. It is obvious that the development of endocrine therapy resistance involves a complex interplay between deregulated ERBB signaling and autophagy that may be considered in clinical practice.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Fulvestrant/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Signal Transduction , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Cell Proliferation , MCF-7 Cells , Autophagy , Drug Resistance, Neoplasm , ErbB Receptors/metabolism
5.
Cancers (Basel) ; 14(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36358747

ABSTRACT

Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.

6.
Molecules ; 27(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35684559

ABSTRACT

Dehydroabietic Acid (DHA, 1) derivatives are known for their antiproliferative properties, among others. In the context of this work, DHA was initially modified to two key intermediates bearing a C18 methyl ester, a phenol moiety at C12, and an acetyl or formyl group at C13 position. These derivatives allowed us to synthesize a series of DHA-chalcone hybrids, suitable for structure-activity relationship studies (SARS), following their condensation with a variety of aryl-aldehydes and methyl ketones. The antiproliferative evaluation of the synthesized DHA-chalcone hybrids against three breast cancer cell lines (the estrogen-dependent MCF-7 and the estrogen-independent MDA-MB-231 and Hs578T) showed that eight derivatives (33, 35, 37, 38, 39, 41, 43, 44) exhibit low micromolar activity levels (IC50 2.21-11.5 µΜ/MCF-7). For instance, some of them showed better activity compared to the commercial anticancer drug 5-FU against MCF-7 cells (33, 41, 43, 44) and against MDA-MB231 (33 and 41). Hybrid 38 is a promising lead compound for the treatment of MCF-7 breast cancer, exhibiting comparable activity to 5-FU and being 12.9 times less toxic (SI = 22.7). Thus, our findings suggest that DHA-chalcone hybrids are drug candidates worth pursuing for further development in the search for novel breast cancer therapies.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Chalcone , Chalcones , Abietanes , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Chalcone/pharmacology , Chalcones/pharmacology , Drug Screening Assays, Antitumor , Estrogens/pharmacology , Female , Fluorouracil/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship
7.
FEBS J ; 288(24): 6850-6912, 2021 12.
Article in English | MEDLINE | ID: mdl-33605520

ABSTRACT

Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.


Subject(s)
Extracellular Matrix/metabolism , Animals , Extracellular Matrix/chemistry , Humans
8.
Matrix Biol Plus ; 6-7: 100033, 2020 May.
Article in English | MEDLINE | ID: mdl-33543029

ABSTRACT

Despite the functional role of serglycin as an intracellular proteoglycan, a variety of malignant cells depends on its expression and constitutive secretion to advance their aggressive behavior. Serglycin arose to be a biomarker for glioblastoma, which is the deadliest and most treatment-resistant form of brain tumor, but its role in this disease is not fully elucidated. In our study we suppressed the endogenous levels of serglycin in LN-18 glioblastoma cells to decipher its involvement in their malignant phenotype. Serglycin suppressed LN-18 (LN-18shSRGN) glioblastoma cells underwent astrocytic differentiation characterized by induced expression of GFAP, SPARCL-1 and SNAIL, with simultaneous loss of their stemness capacity. In particular, LN-18shSRGN cells presented decreased expression of glioma stem cell-related genes and ALDH1 activity, accompanied by reduced colony formation ability. Moreover, the suppression of serglycin in LN-18shSRGN cells retarded the proliferative and migratory rate, the invasive potential in vitro and the tumor burden in vivo. The lack of serglycin in LN-18shSRGN cells was followed by G2 arrest, with subsequent reduction of the expression of cell-cycle regulators. LN-18shSRGN cells also exhibited impaired expression and activity of proteolytic enzymes such as MMPs, TIMPs and uPA, both in vitro and in vivo. Moreover, suppression of serglycin in LN-18shSRGN cells eliminated the activation of pro-tumorigenic signal transduction. Of note, LN-18shSRGN cells displayed lower expression and secretion levels of IL-6, IL-8 and CXCR-2. Concomitant, serglycin suppressed LN-18shSRGN cells demonstrated repressed phosphorylation of ERK1/2, p38, SRC and STAT-3, which together with PI3K/AKT and IL-8/CXCR-2 signaling control LN-18 glioblastoma cell aggressiveness. Collectively, the absence of serglycin favors an astrocytic fate switch and a less aggressive phenotype, characterized by loss of pluripotency, block of the cell cycle, reduced ability for ECM proteolysis and pro-tumorigenic signaling attenuation.

9.
Semin Cancer Biol ; 62: 108-115, 2020 05.
Article in English | MEDLINE | ID: mdl-31279836

ABSTRACT

Numerous studies point out serglycin as an important regulator of tumorigenesis in a variety of malignancies. Serglycin expression correlates with the aggressive phenotype of tumor cells and serves as a poor prognostic indicator for disease progression. Although serglycin is considered as an intracellular proteoglycan, it is also secreted in the extracellular matrix by tumor cells affecting cell properties, oncogenic signaling and exosomes cargo. Serglycin directly interacts with CD44 and possibly other cell surface receptors including integrins, evoking cell adhesion and signaling. Serglycin also creates a pro-inflammatory and pro-angiogenic tumor microenvironment by regulating the secretion of proteolytic enzymes, IL-8, TGFß2, CCL2, VEGF and HGF. Hence, serglycin activates multiple signaling cascades that drive angiogenesis, tumor cell growth, epithelial to mesenchymal transition, cancer cell stemness and metastasis. The interference with the tumorigenic functions of serglycin emerges as an attractive prospect to target malignancies.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epithelial-Mesenchymal Transition , Neoplasms/etiology , Neoplasms/metabolism , Proteoglycans/genetics , Proteoglycans/metabolism , Signal Transduction , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Animals , Biomarkers, Tumor , Cell Line, Tumor , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/pathology , Neoplastic Stem Cells/metabolism
10.
Methods Mol Biol ; 1952: 1-20, 2019.
Article in English | MEDLINE | ID: mdl-30825161

ABSTRACT

Extracellular matrix (ECM) maintains the structural integrity of tissues and regulates cell and tissue functions. ECM is comprised of fibrillar proteins, proteoglycans (PGs), glycosaminoglycans, and glycoproteins, creating a heterogeneous but well-orchestrated network. This network communicates with resident cells via cell-surface receptors. In particular, integrins, CD44, discoidin domain receptors, and cell-surface PGs and additionally voltage-gated ion channels can interact with ECM components, regulating signaling cascades as well as cytoskeleton configuration. The interplay of ECM with recipient cells is enriched by the extracellular vesicles, as they accommodate ECM, signaling, and cytoskeleton molecules in their cargo. Along with the numerous biological properties that ECM can modify, autophagy and angiogenesis, which are critical for tissue homeostasis, are included. Throughout development and disease onset and progression, ECM endures rearrangement to fulfill cellular requirements. The main responsible molecules for tissue remodeling are ECM-degrading enzymes including matrix metalloproteinases, plasminogen activators, cathepsins, and hyaluronidases, which can modify the ECM structure and function in a dynamic mode. A brief summary of the complex interplay between ECM macromolecules and cells in tissues and the contribution of ECM in tissue homeostasis and diseases is given.


Subject(s)
Autophagy , Cell Communication , Extracellular Matrix/metabolism , Neovascularization, Physiologic , Animals , Extracellular Matrix Proteins/metabolism , Humans , Hyaluronic Acid/metabolism , Neoplasms/metabolism
11.
FEBS J ; 286(15): 2830-2869, 2019 08.
Article in English | MEDLINE | ID: mdl-30908868

ABSTRACT

Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.


Subject(s)
Carcinogenesis/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Osteoarthritis/metabolism , Animals , Carcinogenesis/genetics , Extracellular Matrix/chemistry , Extracellular Matrix/pathology , Extracellular Matrix Proteins/genetics , Fibrosis/genetics , Fibrosis/metabolism , Humans , Osteoarthritis/genetics
12.
Matrix Biol ; 74: 35-51, 2018 12.
Article in English | MEDLINE | ID: mdl-29842969

ABSTRACT

Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Proteoglycans/genetics , Proteoglycans/metabolism , Signal Transduction , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Interleukin-8/metabolism , MCF-7 Cells , Matrix Metalloproteinases/metabolism , Proteolysis
13.
Methods Mol Biol ; 1731: 325-348, 2018.
Article in English | MEDLINE | ID: mdl-29318564

ABSTRACT

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that are capable of degrading numerous extracellular matrix (ECM) components thus participating in physiological and pathological processes. Apart from the remodeling of ECM, they affect cell-cell and cell-matrix interactions and are implicated in the development and progression of various diseases such as cancer. Numerous studies have demonstrated that MMPs evoke epithelial to mesenchymal transition (EMT) of cancer cells and affect their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Various studies have suggested MMPs as suitable targets for treatment of malignancies, and several MMP inhibitors (MMPIs) have been developed. Although initial trials have failed to establish MMPIs as anticancer agents due to lack of specificity and side effects, new MMPIs have been developed with improved action that are currently being investigated. Furthermore, novel strategies that target MMPs for improving drug delivery and regulating their activity in tumors are presented. This review summarizes the implication of MMPs in cancer progression and discusses the advancements in their targeting.


Subject(s)
Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinases/metabolism , Neoplasms/drug therapy , Animals , Clinical Trials as Topic , Disease Progression , Drug Delivery Systems/methods , Enzyme Activation/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Matrix Metalloproteinases/genetics , MicroRNAs/metabolism , Molecular Targeted Therapy/methods , Neoplasms/genetics , Neoplasms/pathology , Protein Domains/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...